
The Inform Beginner’s Guide

Roger Firth and Sonja Kesserich

Second Edition: August 2002

With a Foreword by Graham Nelson

The Inform Beginner’s Guide

Authors: Roger Firth and Sonja Kesserich
Editor: Dennis G. Jerz
Printed edition managed by: David Cornelson

Cover: First Steps (watercolour and crayon on paper, 2002) Harry Firth (2000—)

This book and its associated example games are copyright © Roger Firth and
Sonja Kesserich 2002. Their electronic forms may be freely distributed provided
that: (a) distributed copies are not substantially different from those archived by
the authors, (b) this and other copyright messages are always retained in full, and
(c) no profit is involved. Exceptions to these conditions must be negotiated
directly with the authors (roger@firthworks.com and polilla@idecnet.com).

The authors assume no liability for errors and omissions in this book, or for
damages or loss of revenue resulting from the use of the information contained
herein, or the use of any of the software described herein.

Inform, the program and its source code, its example games and documentation,
are copyright © Graham Nelson 1993—2002.

First Edition: April 2002
Second Edition (with minor revisions): August 2002

To be published by The Interactive Fiction Library (IFLibrary.com)
PO Box 3304, St Charles, Illinois 60174
Printed in the United States of America
ISBN 0-9713119-2-7

 CONTENTS

3

Contents

Foreword by Graham Nelson . 7

About this guide . 9
Scope and approach 10
Presentation and style 10
Useful Internet resources 11
Acknowledgements 12

1 • Just what is interactive fiction? . 13

2 • Tools of the trade . 17
Inform on an IBM PC 19
Inform on an Apple Macintosh 23
More about the editor 24
More about the compiler 24
More about the interpreter 25

3 • Heidi: our first Inform game . 27
Creating a basic source file 27
Understanding the source file 29
Defining the game’s locations 30
Joining up the rooms 32
Adding the bird and the nest 35
Adding the tree and the branch 37
Finishing touches 39

4 • Reviewing the basics . 41
Constants and variables 41
Object definitions 42
Object relationships – the object tree 44
Things in quotes 47
Routines and statements 48

5 • Heidi revisited . 51
Listening to the bird 51
Entering the cottage 53
Climbing the tree 55
Dropping objects from the tree 56
Is the bird in the nest? 58
Summing up 58

6 • William Tell: a tale is born . 61
Initial setup 61
Object classes 64

 CONTENTS

4

7 • William Tell: the early years . 69
Defining the street 69
Adding some props 71
The player’s possessions 73
Moving further along the street 75
Introducing Helga 76

8 • William Tell: in his prime . 81
The south side of the square 81
The middle of the square 82
The north side of the square 89

9 • William Tell: the end is nigh . 91
The marketplace 91
Gessler the governor 95
Walter and the apple 96
Verbs, verbs, verbs 98

10 • Captain Fate: take 1 . 105
Fade up on: a nondescript city street 105
A hero is not an ordinary person 112

11 • Captain Fate: take 2 . 115
A homely atmosphere 115
A door to adore 119

12 • Captain Fate: take 3 . 127
Too many toilets 127
Don’t shoot! I’m only the barman 130

13 • Captain Fate: the final cut . 137
Additional catering garnish 137
Toilet or dressing room? 138
And there was light 141
Amazing technicolour dreamcoats 146
It’s a wrap 148

14 • Some last lousy points . 151
Expressions 151
Internal IDs 152
Statements 152
Directives 154
Objects 155
Routines 157
Reading other people’s code 159

15 • Compiling your game . 167
Ingredients 167
Compiling à la carte 170
Switches 171

 CONTENTS

5

16 • Debugging your game . 173
Command lists 174
Spill them guts 174
What on earth is going on? 175
Super-powers 177
Infix: the harlot’s prerogative 178
No matter what 179

17 • *** You have won *** . 181

Appendix A • How to play an IF game . 185

Appendix B • “Heidi” story . 189
Transcript of play 189
Game source code – original version 190
Game source code – revisited 192

Appendix C • “William Tell” story . 195
Transcript of play 195
Game source code 198
Compile-as-you-go 208

Appendix D • “Captain Fate” story . 211
Transcript of play 211
Game source code 214
Compile-as-you-go 227

Appendix E • Inform language . 229
Literals 229
Names 229
Constants 229
Variables and arrays 229
Expressions and operators 230
Classes and objects 230
Manipulating the object tree 231
Message passing 231
Uncommon and deprecated statements 231
Statements 231
Routines 231
Flow control 232
Loop control 232
Displaying information 232
Verbs and actions 233
Other useful directives 233
Uncommon and deprecated directives 233

 CONTENTS

6

Appendix F • Inform library . 235
Library objects 235
Library constants 235
User-defined constants 235
Library variables 236
Library routines 236
Object properties 238
Object attributes 241
Optional entry points 242
Group 1 actions 242
Group 2 actions 243
Group 3 actions 243
Fake actions 244

Appendix G • Glossary . 245

Index . 251

 FOREWORD BY GRAHAM NELSON

7

Foreword by Graham Nelson

t would, I think, be immodest to compare myself to Charles
Bourbaki (1816–97), French hero of the Crimean War and
renowned strategist, a man offered nothing less as a reward than the
throne of Greece (he declined). It may be in order, though, to say

a few words about his fictitious relative Nicholas, the most dogged, lugubrious,
interminably thorough and clotted writer of textbooks ever to state a theorem.
Rather the way Hollywood credits movies for which nobody wants the blame to
the director “Alan Smithee” (who by now has quite a solid filmography and even
gets the occasional cinema festival), so in mathematics many small results are
claimed to be the work of Nicholas Bourbaki. Various stories are told of the birth
of Bourbaki, under whose name young Parisian mathematicians have clubbed
together since 1935 to write surveys of whole fields of algebra. His initials, it may
be noted, are NB. Some say “Bourbaki” was an in-joke at the Ecole Normale
Supérieure (much as “zork” and “foobar” were at MIT), going right back to a
practical joke in 1880 when a pupil successfully impersonated a visiting “General
Claude Bourbaki”. Folklore also has it that the real general was notorious when
on manoeuvres for being able to eat anything if need be – stale biscuit, raw
turnips, his horse, his horse’s hay, his horse’s leather nosebag that the hay used
to be in – just as Nicholas Bourbaki would have to eat everything there was to eat
in the theory of algebra, no matter how tooth-grinding or chewy. To give credit
where it’s due, Bourbaki’s forty volumes are quite useful. Or, actually, they
aren’t, but it’s nice to know they’re there.

It was on reading this present book that I realised the melancholy truth: that my
own volume on Inform, the Designer’s Manual, is a Bourbaki. It has to cover every
last thing, from Icelandic accents to assembly language to fake actions, not to
mention fake fake actions, to grouping together almost-but-not-quite-identical
objects such as Scrabble tiles – matters which a dedicated Inform designer might
need to look up once in a lifetime, or then again might not. To be sure, the basics
do turn up every so often, especially in Chapters II and III, but despite my best
intention it is a gentle introduction only if you pick your way through as if on
stepping stones. This book, on the other hand, is a follow-as-you-go tutorial,
covering the basics thoroughly and a little at a time. Where the Designer’s Manual
tries never to retrace its steps, so for instance there is just one section on locations,
the Beginner’s Guide works its way through three whole games, giving it three
chances to visit every subject, reinforcing and showing a little more each time.

I should like to say that my first reaction, when out of the blue the authors sent
me advance proofs, was to exclaim with delight at the lucid, uncluttered, sensible
approach. Truthfully, however, that was my third reaction, the first being
jealousy (it’s all right for you, you don’t have to document how the parser
calculates GNA sets for noun clauses) and the second pique (you’ve cast the
gizbru spell: turn dangerous object into a harmless one at my book). When it comes

 FOREWORD BY GRAHAM NELSON

8

down to it, though, there is no greater compliment any writer can be paid than
to have someone else choose to write a book about his work, so I thank Roger
and Sonja for their gesture, as well as the fine job they have done.

That is quite enough talking about myself, as Inform belongs to all its users, to
the hundreds of serious writers of interactive fiction who find it helpful, and for
almost a decade it has been a collective enterprise. Today nobody remembers
who suggested what. Its world-modelling rules now resemble a New England
patchwork quilt, to which each house in the village contributes one woven
square. As you read this book, you might want to bear in mind that such a quilt
is never finished, and always has room for one more square from a newly arrived
neighbour.

St Anne’s College
University of Oxford

April 2002

 ABOUT THIS GUIDE

9

About this guide

If they asked me, I could write a book;
About the way you TALK, and LISTEN; And LOOK.

— with apologies to Richard Rodgers and Lorenz Hart.

ext adventures, otherwise known collectively as interactive fiction
(IF), were highly popular computer games during the 1980s. As
technology evolved they faded from the market, unable to compete
with increasingly sophisticated graphical games; however, IF was

far from dead. The Internet grew, and Usenet discussion forums offered a focal
point for fans of the genre. By developing IF programming tools and systems,
organising contests and writing tutorials and reviews, these enthusiasts have led
a revival responsible for many notable works, including some whose quality
arguably surpasses that of the best commercial titles of the 1980s.

Almost everything that you need to begin writing your own text adventures is
available, for free, on the Internet. Nowadays it’s a hobby, not a business, with a
pretty small audience – probably only a few thousand people worldwide are avid
consumers of contemporary IF. So, expect fun and satisfaction – but no profit.

While expert programmers may relish the considerable challenge of creating text
adventures using a generalised language such as BASIC or C, specialist IF tools
have largely solved the fundamental world-building issues. The most common
systems are Graham Nelson’s Inform – our subject matter – and Mike Roberts’
TADS (Text Adventure Development System). New hopefuls arrive each year,
but few achieve widespread acceptance; the majority of today’s IF (and virtually
all the works generally regarded as well written, mature, interesting, innovative,
sophisticated, etc.) have been created with either one or the other. In our view,
only TADS bears comparison with Inform in popularity, in being able to handle
simple and complex stories, and in availability on PCs, Macs, hand-held devices
and a wide variety of other computers. But, since you’re reading our guide, we’ll
assume that you’ve already made a choice, and decided to give Inform a try.

We aim to provide a grounding in Inform basics. When you have learnt a little
about it, you’ll be able to design simple games for your friends to play and, as you
become more accomplished, which you can share via the Internet with
enthusiasts worldwide. However, if you simply want to play1 games written by
others – rather than write them yourself – then you don’t need to learn Inform,
and this guide isn’t for you.

1. If you feel confused about IF in general or about this distinction between writing and
playing in particular, try glancing ahead at “Just what is interactive fiction?” on page 13
and at “How to play an IF game” on page 185; also, try the Ifaq at
http://www.plover.net/~textfire/raiffaq/ifaq/.

 ABOUT THIS GUIDE

10

Scope and approach

Because this is only an introduction to Inform, many features are treated rather
superficially, or ignored altogether. The definitive text is Graham Nelson’s Inform
Designer’s Manual (Fourth Edition, July 2001), commonly known as the DM4; you
cannot hope to use Inform successfully without having this splendid book by
your side. Our guide should be seen merely as a supplement to the DM4, offering
step-by-step descriptions of those aspects of Inform which are most important on
first acquaintance. In any matter where we seem at odds with what Graham has
written, you should assume that he is right and that we are, well, confused.

As a tutorial, this guide is intended to be printed out and then read sequentially;
it isn’t meant for online usage or designed as a reference manual, though it does
provide brief summaries of Inform’s language and library. Our approach is to
teach you about Inform through the creation of three games: all short, all
playable to completion. “Heidi” is just about as simple as an IF game can be, but
still manages to introduce a range of important concepts. “William Tell”, a
retelling of the famous folk tale, is nearly as brief but roams more widely in its
use of Inform’s capabilities. Finally “Captain Fate” presents a comic-book hero
in urgent need of a change. By the end of the guide, we’ll have touched on less
than half of Inform’s capabilities, but we hope we’ll have mentioned most of the
things that matter when you’re starting out to design your first Inform game.

One final point: Inform is a powerful system, often offering several different ways
of tackling a particular design requirement. We’ve tried to present things as
simply and consistently as possible, but you shouldn’t be surprised to discover
other approaches, maybe shorter, maybe more efficient, than those shown here.

Presentation and style

Most of the guide’s text appears in this typeface, except where we’re using words
which are part of the Inform system (like print, Include, VerbLib) or are extracted
from one of our games (like bird, nest, top_of_tree). Terms in bold type are
included in the glossary – Appendix G on page 245. We switch to italic type for
a placeholder: for example you should read the Inform statement:

print "string";

as meaning “display on the player’s screen the arbitrary character or characters
which are represented here by the placeholder string”. Examples might include:

print "Hello world!";
print "Fourscore and seven years ago our fathers brought forth on this continent

a new nation, [...] and that government of the people, by the people,
for the people shall not perish from the earth.";

We place the “TYPE” symbol alongside game fragments which you can type in as
a part of our working examples. This differentiates them from other code
snippets whose only purpose is to illustrate some particular feature.

T
Y
P
E

 ABOUT THIS GUIDE

11

Useful Internet resources

One of our basic assumptions – along with your burning desire to learn Inform
and your ability to work comfortably with the files and folders on your computer
– is that you have access to the Internet. This is pretty well essential, since almost
everything you need is available only via this medium. In particular, you’ll find
much helpful material at these locations:

• http://www.inform-fiction.org/

The Inform home page, maintained by Graham Nelson and a small team of
helpers. Most important, this is where you can find the Inform Designer’s
Manual in PDF format.

• http://www.ifarchive.org/

The IF Archive, from which you can download almost anything that’s free
and in the public domain. For a clickable map of Inform-related parts of the
Archive, see http://www.firthworks.com/roger/informfaq/hh.html.

NOTE: prior to August 2001, the IF Archive was located elsewhere, at
ftp://ftp.gmd.de/if-archive/, and references to that location can still be
found. Do not use the old location: any information still available from there
is likely to be out-of-date.

• http://www.iflibrary.com/

Paperback copies of the Inform Designer’s Manual and this Inform Beginner’s
Guide will at some point be available from David Cornelson’s IF Library site.

• http://www.firthworks.com/roger/

Roger Firth’s Inform pages, including the Informary (what’s new in Inform?),
and the Inform Frequently Asked Questions (FAQ) pages.

• http://www.plover.net/~textfire/raiffaq/

A more general list of FAQs about IF authorship, covering both Inform and
the other main systems.

• news:rec.arts.int-fiction

The Usenet newsgroup for authors of IF, commonly known by the
abbreviation RAIF. Here you’ll find discussion on IF technology, criticism
and game design issues, and fast, friendly and knowledgeable assistance with
your own “how do I…” questions (but please, look in the manual first).

• news:rec.games.int-fiction

The complementary newsgroup for IF players, often known as RGIF.

 ABOUT THIS GUIDE

12

Acknowledgements

Becoming sufficiently conversant with Inform to be able to share it with others is
not something done quickly or in isolation. In getting to where we are today, we
have been assisted at many times and in many ways by the notably supportive
and good-natured people, far too numerous to list by name, who make
rec.arts.int-fiction such an invaluable IF resource. We are grateful to you all.

In writing this guide, we have received specific help from a number of people
(some not even related to us): Harry Firth and Jo Quinn created the cover
artwork, while Barney Firth, Megan Firth and Phil Graham assisted us with PC
and Macintosh environments. Graham Nelson kindly wrote the Foreword, and
delighted us with long and detailed lists of helpful comments and suggestions on
two of our drafts; we also greatly appreciate the views of other early readers,
including Christine Firth, Jim Fisher, Muffy St. Bernard, Gunther Schmidl,
Emily Short and A. Sloe. Inform novice Paul Johnson tested its validity as a
tutorial, and painstakingly reassured us that it actually worked. Dennis G. Jerz
patiently and skilfully edited the text, making innumerable improvements to our
often wayward and inconsistent prose. Further invaluable feedback on the first
(beta) edition came from Rosemary Frezza (bug-hunter extraordinaire), Curt
Siffert, Pavel Soukenik, Elise Stone and Brent VanFossen. With his usual flair,
David Cornelson is supervising the guide’s eventual transformation into
professionally printed respectability. Thank you: it is impossible to overestimate
the value of this freely given support and assistance.

The drop capitals, and their associated poem, are from “A Picture Alphabet”,
digitised from a collection of public domain woodcuts, circa 1834, by Steven J.
Lundeen of emerald city fontwerks.

All credit to the generosity of http://briefcase.yahoo.com/ for making
international file-sharing such a breeze.

Finally, of course, we owe an enormous debt of gratitude to Graham Nelson for
devising it all, thereby giving us the opportunity – first independently and later
in enjoyable collaboration – of using, and eventually of presenting, the Inform
text adventure development system.

Roger Firth
Reading, England

Sonja Kesserich
Madrid, Spain

August 2002

1 • JUST WHAT IS INTERACTIVE FICTION?

13

1 • Just what is interactive fiction?

A was an archer, who shot at a frog;
B was a butcher, who had a great dog.

efore we start learning to use the Inform system, it’s probably
sensible to consider briefly how IF, which has many narrative
elements, differs from regular storytelling. Before we do that,
though, let’s look at an example of a familiar folk tale.

“There was once a man called Wilhelm Tell, from high in the Swiss Alps near the
town of Altdorf. A hunter and a guide, a proud mountaineer, he lived by his skills
in tracking and archery. It happened one day that Wilhelm visited the town to
buy provisions, and he took his son Walter with him.

The region was at the time governed by Hermann Gessler (a vain and petty man
appointed as vogt by the Austrian emperor), who attempted a show of power
over his subjects by placing his hat on a pole in the town square, for everyone to
salute. Reluctant citizens were “encouraged” by a troop of the vogt’s soldiers,
who made sure that their bows were sufficiently respectful.

Wilhelm knew of the hat, and of the humiliating exercise in obeisance. So far he
had managed to avoid the town’s square, sure that – given his open dislike for the
vogt – his refusal to bend the knee would cause trouble. Today, however, he
needed to pass near the pole to reach Johansson’s tannery.

If Wilhelm had hoped for a lucky break, we’ll never know. The square was filled
with market-day crowds; the soldiers were especially keen in their salute-
enforcing duties, challenging everyone with loud shouts and the occasional
coarse expletive. Wilhelm threw a protective arm over his son’s shoulder and
walked determinedly without looking at the pole or the guards.

A soldier called to him; Wilhelm took no notice. Other guards focused their
attention on the archer. “Salute the vogt’s hat,” he was told. A tense silence
followed. Wilhelm tried to keep going, but by now he was surrounded. The men
knew of him; one counselled Wilhelm to give a cursory nod towards the hat and
be done. Everybody in the vicinity was watching, so the disrespect could not be
ignored. There was a long pause. Wilhelm refused.

Word was sent to Gessler, who rushed to the square with reinforcements. The
little man was delighted at the chance of making an example of the trouble-
maker. He mockingly recounted the many skills of Herr Tell, speculating that
such mastery maybe accounted for the pride that prevented acknowledgement
of the Emperor’s authority. The vogt understood all that, and would give him a
fair chance. If Wilhelm were able to shoot true at an apple from fifty paces,
Gessler would be inclined to show mercy; however, to make things interesting,
the apple was to be balanced on Walter’s head.

1 • JUST WHAT IS INTERACTIVE FICTION?

14

Everything was set up. Wilhelm selected and mounted an arrow and slowly
raised the bow, conscious of the motionless and brave stance that Walter was
displaying. He pulled, feeling the tension mount on the string and his fingers,
through his hands, into his arms. He’d made much more difficult shots in the
past, at fleeting deer, at soaring birds; but this was the life of his son... he could
not fail, would not fail.

Wilhelm let loose. The arrow flew straight and true, violently pinning the apple
to the tree behind the boy. The crowd exploded in a roar of relief and admiration,
and Gessler, disappointed, had no option but to let them go.

Years later, Wilhelm led an uprising against the vogt... but that’s another story.”

And now an extract from the same tale, this time in the form of a tiny text
adventure game. If you’re new to interaction with text adventures you’ll find
some general instructions in “How to play an IF game” on page 185, and you can
see a complete transcript of the game in the “William Tell” story on page 195:

A street in Altdorf
The narrow street runs north towards the town square. Local folk are pouring
into the town through the gate to the south, shouting greetings, offering
produce for sale, exchanging news, enquiring with exaggerated disbelief about
the prices of the goods displayed by merchants whose stalls make progress even
more difficult.

"Stay close to me, son," you say, "or you'll get lost among all these people."

>GO NORTH

Further along the street
People are still pushing and shoving their way from the southern gate towards
the town square, just a little further north. You recognise the owner of a fruit
and vegetable stall.

Helga pauses from sorting potatoes to give you a cheery wave.

"Hello, Wilhelm, it's a fine day for trade! Is this young Walter? My, how he's
grown. Here's an apple for him -- tell him to mind that scabby part, but the
rest's good enough. How's Frau Tell? Give her my best wishes."

>INVENTORY
You are carrying:

an apple
a quiver (being worn)

three arrows
a bow

>TALK TO HELGA
You warmly thank Helga for the apple.

>GIVE THE APPLE TO WALTER
"Thank you, Papa."

1 • JUST WHAT IS INTERACTIVE FICTION?

15

>NORTH

South side of the square
The narrow street to the south has opened onto the town square, and resumes at
the far side of this cobbled meeting place. To continue along the street towards
your destination -- Johansson's tannery -- you must walk north across the
square, in the middle of which you see Gessler's hat set on that loathsome pole.
If you go on, there's no way you can avoid passing it. Imperial soldiers jostle
rudely through the throng, pushing, kicking and swearing loudly.
...

Some of the more obvious differences are highlighted by these questions:

• Who is the protagonist?

Our example of narrative prose is written in the third person; it refers to the
hero as “Wilhelm” and “he” and “him”, watching and reporting on his
activities from afar. In this sample IF game, you are the hero, seeing
everything through Wilhelm’s eyes.

• What happens next?

The regular narrative is intended to be read once, straight through from
beginning to end. Unless you didn’t pay attention the first time, or you’re
planning to critique the story, there’s generally no need to go back and read
a sentence twice; if you do, you’ll find exactly the same text. The author leads
the way and sets the pace; you, as the reader, just go along for the ride.

In IF, that’s usually much less true. The author has created a landscape and
populated it with characters, but you choose how and when to explore it. The
game evolves, at least superficially, under your control; perhaps you explore
the street first and then the square, perhaps the other way round. There
usually are multiple paths to be found and followed – and you can be pretty
certain that you won’t discover them all, at least on first acquaintance.

• How does it all turn out?

You can tell when you’ve come to the end of a regular narrative – you read
the last sentence, and you know there’s no more. In IF, it’s clear enough
when you reach an end; what’s much less apparent is whether that’s the only
conclusion. In the transcript from the example game, you win by shooting
the apple from Walter’s head. But what if you miss? What if you hit him by
mistake? Or fire instead at the hated vogt? Or even stand the tale on its head
by bowing obsequiously to the governor’s hat and then going about your
business? All of these are possible ways in which the game could come to an
end. The phrase “what if” is the key to writing successfully, and should
always be in the forefront of an IF designer’s mind.

• Where did Helga come from?

You’ll notice that Helga and her stall don’t appear in the regular narrative;
she’s a distraction from the tale’s momentum. But in the IF game, she fulfils

1 • JUST WHAT IS INTERACTIVE FICTION?

16

a number of useful functions: mentioning the names “Wilhelm”, “Walter”
and “Frau Tell” (so that you know who the tale’s about), introducing the
all-important apple in a natural manner and, above all, providing an
opportunity for the “I” in IF – some interactivity. Without that – the chance
to interact with the tale’s environment – the game is little different from a
conventional piece of fiction.

• That item looks interesting; can you tell me more about it?

In the regular narrative, what you see is what you get; if you want to know
more about alpine life in the fourteenth century, you’ll need to consult
another source. IF, on the other hand, offers at least the possibility of delving
deeper, of investigating in greater detail an item which has been casually
mentioned. For example, you could have explored Helga’s stall:

" ... How's Frau Tell? Give her my best wishes."

>EXAMINE THE STALL
It's really only a small table, with a big heap of potatoes, some carrots
and turnips, and a few apples.

>EXAMINE THE CARROTS
Fine locally grown produce.

You see those descriptions only if you seek them; nothing you find there is
unexpected, and if you don’t examine the stall, you’ve not missed anything
important. Nevertheless, you’ve enhanced the illusion that you’re visiting a
real place. Such details would rapidly grow tedious if the stall and its contents
were described in full each time that you pass them.

• How do I work this thing?

Whereas the presence of Helga is an elaboration of the folk tale, the shooting
of the arrow (it’s in the transcript in “William Tell” story on page 195, not in
the extract above) illustrates the opposite principle: simplification. The tale
builds dramatic tension by describing each step as Wilhelm prepares to shoot
the apple. That’s OK; he’s been an archer all his life, and knows how to do
it. You, on the other hand, probably know little about archery, and shouldn’t
be expected to guess at the process and vocabulary. Let’s hope you know that
you need to shoot at the apple – and that’s all it takes. The game explains
what was involved, but doesn’t force you through each mundane step.

Of course, all of these are generalisations, not universal truths; you could find fine
works of IF which contradict each observation. However, for our purposes as
beginners in the craft of IF design, they represent useful distinctions between IF
and conventional fiction.

We’ll come back to the “William Tell” tale in a later chapter, but before then
we’ll work through an even simpler example. And before either of those, we
need to download the necessary files which will enable us to write Inform games.

2 • TOOLS OF THE TRADE

17

2 • Tools of the trade

C was a captain, all covered with lace;
D was a drunkard, and had a red face.

onventional – static – fiction can be written using nothing more than
pencil and paper, or typewriter, or word-processor; however, the
requirements for producing IF are a little more extensive, and the
creative process slightly more complex.

• For static fiction, you first write the text, and then you check it by reading
what you’ve written.

• For IF, you still have to write all of the text, but you also have to establish
what text gets displayed when. Once you have written the necessary Inform
instructions, you use a compiler program to convert them into a playable
format. The resulting information is played by an interpreter program,
which permits you to interact with your developing world.

With static fiction What You Write Is What You Read, but with IF the format in
which you initially write the game doesn’t bear much resemblance to the text
which the interpreter ultimately displays. For example, the “William Tell” game,
in the form that we wrote it, starts like this:

!==
Constant Story "William Tell";
Constant Headline

"^A simple Inform example
 ^by Roger Firth and Sonja Kesserich.^";

Include "Parser";
Include "VerbLib";

!==
! Object classes

Class Room
has light;

...

You will never need to look at it in the form produced by the compiler:

050000012C6C2C2D1EF6010A0C4416900010303230313031004253FEA90C0000
0000000000000000000000000000168F000000000000010200000000362E3231
...

but, as you’ll notice from the full transcript in “William Tell” story on page 195,
the player will see the following:

2 • TOOLS OF THE TRADE

18

The place: Altdorf, in the Swiss canton of Uri. The year is 1307, at which time
Switzerland is under rule by the Emperor Albert of Habsburg. His local governor
-- the vogt -- is the bullying Hermann Gessler, who has placed his hat atop a
wooden pole in the centre of the town square; everybody who passes through the
square must bow to this hated symbol of imperial might.
...

Clearly, there’s more to writing IF than just laying down the words in the right
order. Fortunately, we can make one immediate simplification: the translated
form produced by the Inform compiler – those cryptic numbers and letters held
in what’s known as the story file – is designed to be read by the interpreter
program. The story file is an example of a “binary” file, containing data intended
for use only by a computer program. Forget all that unreadable gibberish.

So that leaves just the first form – the one starting “Constant Story” – which
represents the tale written as a piece of IF. That’s the source file (so called
because it contains the game in its original, source, form) which you create on
your computer. The source file is a “text” (or “ASCII”) file containing words and
phrases which can be read – admittedly after a little tuition, which is what this
guide is all about – by humans.

How do you create that source file? Using a third software program: an editor.
However, unlike the compiler and interpreter, this program isn’t dedicated to the
Inform system – or even to IF. An editor is an entirely general tool for creating
and modifying text files; you’ve probably already got a basic one on your
computer (an IBM PC running Windows comes with NotePad, while an Apple
Macintosh has SimpleText or TextEdit), or you can download a better one from
the Internet. An editor is like a word-processing program such as MS Word, only
much less complex; no fancy formatting features, no bold or italics or font
control, no embedded graphics; it simply enables you to type lines of text, which
is exactly what’s needed to create an IF game.

If you look at the game source on the previous page, or in the “William Tell”
story on page 195, you’ll notice Include "Parser"; and Include "VerbLib"; a few
lines down from the top of the file. These are instructions to the Inform compiler
to “include” – that is, to merge in the contents – of files called Parser.h and
VerbLib.h. These are not files which you have to create; they’re standard library
files, part of the Inform system. All that you have to do is remember to Include
them in every game that you write. Until you’ve a fair understanding of how
Inform works, you’ve no need to worry about what they contain (though you can
look if you want to: they’re readable text files, just like the ones this guide will
teach you to write).

So, we’ve now introduced all of the bits and pieces which you need in order to
write an Inform adventure game:

• a text editor program which can create and modify the source file
containing the descriptions and definitions of your game. Although it’s not

2 • TOOLS OF THE TRADE

19

recommended, you can even use a word-processing program to do this, but
you have to remember to save your game in Text File format;

• some Inform library files which you Include in your own game source file
in order to provide the model world – a basic game environment and lots
of useful standard definitions;

• the Inform compiler program, which reads your source file (and the library
files) and translates your descriptions and definitions into another format –
the story file – intended only for...

• an Inform interpreter program, which is what players of your game use. A
player doesn’t require the source file, library files or compiler program, just
the interpreter and the game in compiled format (which, because it’s a binary
file not meaningful to human eyes, neatly discourages players from cheating).

All of those, apart from the editor, can be downloaded for free from the IF
Archive. One approach is to fetch them individually, following the guidance on
Graham’s page: visit http://www.inform-fiction.org/ and look for the “Software”
section. However, if you’re using a PC or a Mac, you’ll find it easier to download
a complete package containing everything that you need to get started.

Inform on an IBM PC

Follow these steps:

1. Download http://www.firthworks.com/roger/downloads/inform_pc_env.zip to a
temporary location on your PC.

2. Use a tool like WinZip to unzip the downloaded file, giving you a new Inform
folder. Move this folder (and its contents) to a suitable location on your PC –
a good place would be C:\My Documents\Inform, but you could also use
C:\Inform or C:\Program Files\Inform. You should now have this set of folders:

In order to make the download small and fast, these folders include just
enough to get you started as an Inform designer – the compiler and

2 • TOOLS OF THE TRADE

20

interpreter programs, the library files, the Ruins.inf example file from the
Inform Designer’s Manual, and a template for your own first game. A few other
folders are included as placeholders where you could later download
additional components, if you wanted them. As soon as possible, you should
download the Inform Designer’s Manual into the Inform\Doc folder – it’s an
essential document to have, and has been omitted from this download only
because of its 3MB size.

3. To verify that the downloaded files work properly, use Windows Explorer to
display the contents of the Inform\Games\MyGame1 folder: you will see the two
files MyGame1.bat and MyGame1.inf:

MyGame1.inf is a tiny skeleton game in Inform source format. By convention,
all Inform source files have an extension of .inf; Windows has an inbuilt
definition for .inf files, and so shows its Type as “Setup Information”, but this
doesn’t seem to matter. If you double-click the file, it should open in NotePad
so that you can see how it’s written, though it probably won’t mean much –
yet.

4. MyGame1.bat is an MS-DOS batch file (an old kind of text-only computer
program, from the days before point-and-click interfaces) which runs the
Inform compiler. Double-click it; a DOS window opens as the game
compiles, and you’ll see this:

C:\My Documents\Inform\Games\MyGame1>..\..\Lib\Zcode\Infrmw32 MyGame1 -S
+include_path=.\,..\..\Lib\Zcode,..\..\Lib\Contrib | more

PC/Win32 Inform 6.21 (30th April 1999)

C:\My Documents\Inform\Games\MyGame1>pause "at end of compilation"
Press any key to continue . . .

Press the space bar, then close the DOS window.

NOTE: on Windows NT, 2000 and XP, the DOS window closes of its own
accord when you press the space bar.

5. A story file MyGame1.z5 has appeared in the folder; this is the compiled game,
which you can play using an interpreter:

2 • TOOLS OF THE TRADE

21

The extension of .z5 signifies that the story file contains a Z-Machine game
in Version 5 (today’s standard) format.

6. Use Windows Explorer to display the contents of the Inform\Bin\Frotz folder,
and double-click Frotz.exe; the interpreter presents an Open a Z-code Game
dialog box.

7. Browse to display the Inform\Games\MyGame1 folder, and select MyGame1.z5. Click
Open. The game starts running in the Windows Frotz 2002 window.

8. When you tire of “playing” the game – which won’t take long – you can type
the QUIT command, you can select File > Exit, or you can simply close the
Frotz window.

9. Using the same techniques, you can compile and play Ruins.inf, which is
held in the Inform\Games\Download folder. RUINS is the game used as an
example throughout the Inform Designer’s Manual.

Setting file associations

The business of first starting the interpreter, and then locating the story file that
you want to play, is clumsy and inconvenient. You’ll probably find it easier to
automatically associate story files whose extension is .z5 with the Frotz
interpreter.

1. Double-click MyGame1.z5; Windows asks you to select the program which is to
open it:
• type Z-machine game as the “Description for...”
• click to select “Always use this program...”
• click Other...

2. Browse to display the Inform\Bin\Frotz folder, and select Frotz.exe. Click Open.
From now on, you’ll be able to play a game simply by double-clicking its .z5
story file.

Changing the Windows icon

If the Windows icon that’s displayed alongside MyGame1.z5 doesn’t look right, you
can change it.

1. In Windows Explorer, select View > Options... and click File Types:
• select the game file type in the list, which is in order either of application

(Frotz) or of extension (Z5)
• click Edit...

2. In the Edit File Type dialog, click Change Icon.

2 • TOOLS OF THE TRADE

22

3. In the Change Icon dialog, ensure that the file name is
Inform\Bin\Frotz\Frotz.exe, and select one of the displayed icons. Click OK to
close all the dialogs.

The files in the folder should now look like this:

Compiling using a batch file

You can view – and of course change – the contents of MyGame1.bat, the batch file
which you double-click to run the compiler, using any text editor. You’ll see two
lines, something like this (the first chunk is all on one long line, with a space
between the -S and the +include_path):

..\..\Lib\Zcode\Infrmw32 MyGame1 -S
+include_path=.\,..\..\Lib\Zcode,..\..\Lib\Contrib | more

pause "at end of compilation"

These long strings of text are command lines – a powerful interface method
predating the icons and menus that most computer users know. You won’t need
to master the command line interface in order to start using Inform, but this
section will tell you what these particular command lines are doing. There are
five parts to the first line:

1. Infrmw32 refers to the compiler program, and ..\..\Lib\Zcode is the name of
the folder which contains it (addressed relative to this folder, the one which
holds the source file).

2. MyGame1 is the name of the Inform source file; you don’t need to mention its
extension of .inf if you don’t want to.

3. -S is a compiler switch, a way of controlling detailed aspects of how the
compiler operates. This particular switch, one of many, is turning on Strict
mode, which makes the game less likely to misbehave when being played.

NOTE: actually, the -S is redundant, since Strict mode is already on by
default. We include it here as a reminder that (a) to turn Strict mode off, you
change this setting to -~S, and (b) alphabetic case matters here: -s causes a
display of compiler statistics (and -~s does nothing at all).

4. +include_path=.\,..\..\Lib\Zcode,..\..\Lib\Contrib tells the compiler where to
look for files like Parser and VerbLib which you’ve Included. Three locations
are suggested: this folder, which holds the source file (.\); the folder holding
the standard library files (..\..\Lib\Zcode); the folder holding useful bits and
pieces contributed by the Inform community (..\..\Lib\Contrib). The three
locations are searched in that order.

2 • TOOLS OF THE TRADE

23

5. | more causes the compiler to pause if it finds more mistakes than it can tell
you about on a single screen, rather than have them scroll off the top of the
MS-DOS window. Press the space bar to continue the compilation.

The second line – pause "at end of compilation" – just prevents the window from
closing before you can read its contents, as it otherwise would on Windows NT,
2000 and XP.

You’ll need to have a new batch file like this to match each new source file which
you create. The only item which will differ in the new file is the name of the
Inform source file – MyGame1 in this example. You must change this to match the
name of the new source file; everything else can stay the same in each .bat file
that you create.

Getting a better editor

Although NotePad is adequate when you’re getting started, you’ll find life much
easier if you obtain a more powerful editor program. We recommend TextPad,
available as shareware from http://www.textpad.com/; in addition, there are some
detailed instructions at http://www.onyxring.com/informguide.aspx?article=14 on
how to improve the way that TextPad works with Inform. The biggest single
improvement, the one that will make game development dramatically simpler, is
being able to compile your source file from within the editor. No need to save the
file, switch to another window and double-click the batch file (and indeed, no
further need for the batch file itself): just press a key while editing the file – and
it compiles there and then. You can also run the interpreter with similar ease. The
convenience of doing this far outweighs the small amount of time needed to
obtain and configure TextPad.

Inform on an Apple Macintosh

Follow these steps:

1. Download http://www.firthworks.com/roger/downloads/inform_mac_env.sit to a
temporary location on your Mac.

2. Use a tool like StuffIt Expander to unpack the downloaded file, giving you a
new Inform folder. Move this folder (and its contents) to a suitable location on
your Mac.

In order to make the download small and fast, these folders include just
enough to get you started as an Inform designer – the compiler and
interpreter programs, the library files, the Ruins.inf example file from the
Inform Designer’s Manual, and a template for your own first game. A few other
folders are included as placeholders where you could later download
additional components, if you wanted them. As soon as possible, you should
download the Inform Designer’s Manual into the Inform:Doc folder – it’s an

2 • TOOLS OF THE TRADE

24

essential document to have, and has been omitted from this download only
because of its 3MB size.

Getting a better editor

Although SimpleText (or OS X’s TextEdit) is adequate when you’re getting
started, you’ll find life much easier if you obtain a more powerful editor program.
We recommend BBEdit Lite, available without charge from
http://www.barebones.com/products/bbedit_lite.html.

More about the editor

As well as the ones that we recommend, other good text editors are listed at
http://www.firthworks.com/roger/editors/. One feature that’s well worth looking
out for is “hotkey compilation” – being able to run the compiler from within the
editor. Another is “syntax colouring”, where the editor understands enough of
Inform’s syntax rules to colour-code your source file; for example: red for
brackets, braces and parentheses [] { } and (), blue for reserved words like
Object and print, green for items in quotes like '...' and "...", and so on. Syntax
colouring is of great assistance in getting your source file correct and thus
avoiding silly compilation errors.

More about the compiler

The Inform compiler is a powerful but undramatic software tool; it does an awful
lot of work, but it does it all at once, without stopping to ask you any questions.
Its input is a readable text source file; the output is a story file, also sometimes
known as a Z-code file (because it contains the game translated into code for the
Z-Machine, which we describe in the next section).

If you’re lucky, the compiler will translate your source file into Z-code; perhaps
surprisingly, it doesn’t display any form of “success” message when it succeeds.
Often, however, it fails, because of mistakes which you’ve made when writing the
game. Inform defines a set of rules – a capital letter here, a comma there, these
words only in a certain order, those words spelled just so – about which the
compiler is extremely fussy. If you accidentally break the rules, the compiler
complains: it refuses to write a Z-code file. Do not worry about this: the rules are
easy to learn, but just as easy to break, and all Inform designers inadvertently do
so on a regular basis. There’s some additional information about dealing with
these mistakes, and about controlling how the compiler behaves, in “Compiling
your game” on page 167.

2 • TOOLS OF THE TRADE

25

More about the interpreter

One of the big advantages of the way Inform works is that a compiled game – the
Z-code story file – is portable between different computers. That’s not just from
one PC to another: exactly the same story file will run on a PC, a Mac, an Amiga,
UNIX workstations, IBM mainframes, PalmOS hand-helds, and on dozens of
other past, present and future computers. The magic that makes this happen is
the interpreter program, a software tool which pretends to be a simple computer
called a Z-Machine. The Z-Machine is an imaginary (or “virtual”) computer, but
its design has been very carefully specified, so that an expert programmer can
quite easily build one. And that’s exactly what has happened: a Macintosh guru
has built an Inform interpreter which runs on Apple Macs, a UNIX wizard has
built one for UNIX workstations, and so on. Sometimes, you even get a choice;
for popular machines like the PC and the Mac there are several interpreters
available. And the wonderful thing is: each of those interpreters, on each of those
computers, is able to play every Inform game that’s ever been written and, as a
surprise bonus, all of the classic 1980s Infocom games like “Zork” and “The
Hitchhiker’s Guide to the Galaxy” as well!

(Actually, that last sentence is a slight exaggeration; a few games are very large,
or have pictures included within them, and not all interpreters can handle this.
However, with that small pinch of salt, it’s pretty accurate.)

That’s enough waffling: let’s get started! It’s time to begin designing our first
game.

2 • TOOLS OF THE TRADE

26

3 • HEIDI: OUR FIRST INFORM GAME

27

3 • Heidi: our first Inform game

E was an esquire, with pride on his brow;
F was a farmer, and followed the plough.

ach of the three games in this guide is created step by step; you’ll get
most benefit (especially to begin with) if you take an active part, typing
in the source code on your computer. Our first game, described in this
chapter and the two which follow, tells this sentimental little story:

“Heidi lives in a tiny cottage deep in the forest. One sunny day, standing before
the cottage, she hears the frenzied tweeting of a baby bird; its nest has fallen from
the tall tree in the clearing! Heidi puts the bird into the nest, and then climbs the
tree to place the nest back on its branch.”

It’s a very simple tale, but even so we’ll cover quite a lot of ground before we
have a finished Inform game. We’ll get there in stages, first making a very rough
approximation of the story, and then successively refining the details until it’s
good enough for an initial attempt (there’s time later for more advanced stuff).

Creating a basic source file

The first task is to create an Inform source file template. Every game that we
design will start out like this. Follow these steps:

1. Create an Inform\Games\Heidi folder (maybe by copying Inform\Games\MyGame1).

2. In that folder, use your text editor to create this source file Heidi.inf:

!==
Constant Story "Heidi";
Constant Headline

"^A simple Inform example
 ^by Roger Firth and Sonja Kesserich.^";

Include "Parser";
Include "VerbLib";

!==
! The game objects

!==
! Entry point routines

[Initialise;];

!==
! Standard and extended grammar

Include "Grammar";

!==

T
Y
P
E

3 • HEIDI: OUR FIRST INFORM GAME

28

Soon, we’ll explain what this means. For now, just type it all in, paying
particular attention to those seven semicolons, and ensuring that the double
quotes "..." always come in pairs. The lines beginning with exclamation
marks, on the other hand, are purely decorative; they just make the file’s
structure a little easier to understand.

Ensure the file is named Heidi.inf, rather than Heidi.txt or Heidi.inf.txt.

Remember that, throughout this guide, we place the “TYPE” symbol alongside
pieces of code that we recommend you to type into your own game files as
you read through the examples (which, conversely, means that you don’t
need to type the unmarked pieces of code). You’ll learn Inform more quickly
by trying it for yourself, rather than just taking our word for how things work.

3. In the same folder, use your text editor to create the compilation support file
Heidi.bat (on a PC; remember that the stuff before pause is one long line):

..\..\Lib\Zcode\Infrmw32 Heidi -S
+include_path=.\,..\..\Lib\Zcode,..\..\Lib\Contrib | more

pause "at end of compilation"

or Heidi.icl (on a Macintosh):

-S
+source_path=":::Games:Heidi"
+code_path=":::Games:Heidi"
+include_path=":::Games:Heidi,,::Contrib"
compile Heidi.inf

Type in the file from scratch, or copy and edit MyGame1.bat (or MyGame1.icl). At
this point, you should have a Heidi folder containing two files: Heidi.inf and
either Heidi.bat or Heidi.icl.

4. Compile the source file Heidi.inf. (Refer back to “Inform on an IBM PC” on
page 19 for guidance; on a Mac, run Inform-Z, click Compile, and select
Heidi.icl in the dialog box.) If the compilation works, a story file Heidi.z5
appears in the folder. If the compilation doesn’t work, you’ve probably made
a typing mistake; check everything until you find it.

5. You can run the story file in your Inform interpreter; you should see this
(except that the Serial number will be different – it’s based on the date):

Heidi
A simple Inform example
by Roger Firth and Sonja Kesserich.
Release 1 / Serial number 020827 / Inform v6.21 Library 6/10 SD

Darkness
It is pitch dark, and you can't see a thing.

>

When you get that far, your template source file is correct. Let’s explain what it
contains.

T
Y
P
E

T
Y
P
E

3 • HEIDI: OUR FIRST INFORM GAME

29

Understanding the source file

Although we’ve got a certain amount of freedom of expression, source files tend
to conform to a standard overall structure: these lines at the start, that material
next, those pieces coming at the end, and so on. What we’re doing here is
mapping out a structure that suits us, giving ourselves a clear framework onto
which the elements of the game can be fitted. Having a clear (albeit sparse) map
at the start will help us to keep things organised as the game evolves.

We can infer half a dozen Inform rules just by looking at the source file.

• When the compiler comes across an exclamation mark, it ignores the rest of
the line. If the ! is at the start of a line, the whole line is ignored; if the ! is
halfway along a line, the compiler takes note of the first half, and then ignores
the exclamation mark and everything after it on that line. We call material
following an exclamation mark, not seen by anybody else, a comment; it’s
often a remark that we write to remind ourselves of how something works or
why we tackled a problem in a particular way. There’s nothing special about
those equals signs: they just produce clear lines across the page.

It’s always a good idea to comment code as you write it, for later it will help
you to understand what was going on at a particular spot. Although it all
seems clear in your head when you first write it, in a few months you may
suspect that a totally alien mind must have produced that senseless gibberish.

By the way, the compiler doesn’t give special treatment to exclamation marks
in quoted text: ! within quotes "..." is treated as a normal character. On this
line, the first ! is part of the sequence (or string) of characters to be displayed:

print "Hello world!"; ! <- is the start of this comment

• The compiler ignores blank lines, and treats lots of space like a single space
(except when the spaces are part of a character string). So, these two rules tell
us that we could have typed the source file like this:

Constant Story "Heidi";
Constant Headline
"^A simple Inform example^by Roger Firth and Sonja Kesserich.^";
Include "Parser";Include "VerbLib";
[Initialise;];
Include "Grammar";

We didn’t type it that way because, though shorter, it’s much harder to read.
When designing a game, you’ll spend a lot of time studying what you’ve
typed, so it’s worthwhile taking a bit of care to make it as readable as possible.

• Every game needs the constant definitions for Story (the game’s name) and
Headline (typically, information on the game’s theme, copyright, authorship
and so on). These two string values, along with a release number and date,
and details of the compiler, compose the banner which is displayed at the
start of each game.

3 • HEIDI: OUR FIRST INFORM GAME

30

• Every game needs the three lines which Include the standard library files –
that is, they merge those files’ contents into your source file:

Include "Parser";
Include "VerbLib";
...
Include "Grammar";

They always have to be in this order, with Parser and VerbLib near the start of
the file, and Grammar near the end.

• Every game needs to define an Initialise routine (note the British spelling):

[Initialise;];

The routine that we’ve defined here doesn’t do anything useful, but it still
needs to be present. Later, we’ll come back to Initialise and explain what a
routine is and why we need this one.

• You’ll notice that each of the items mentioned in the previous three rules
ends with a semicolon. Inform is very fussy about its punctuation, and gets
really upset if you forget a terminating semicolon. In fact, the compiler just
keeps reading your source file until it finds one; that’s why we were able to
take three lines to define the Headline constant

Constant Headline
"^A simple Inform example
 ^by Roger Firth and Sonja Kesserich.^";

Just to repeat what we said earlier: every game that you design will start out from
a basic source file like this (in fact, it might be sensible to keep a copy of this
template file in a safe place, as a starting point for future games). Think of this
stuff as the basic preparation which you’ll quickly come to take for granted, much
as a landscape artist always begins by sizing the canvas before starting to paint.
So, now that we’ve taken a quick tour of Inform’s general needs, we can start
thinking about what this particular game requires.

Defining the game’s locations

A good starting point in any game is to think about the locations which are
involved: this sketch map shows the four that we’ll use:

3 • HEIDI: OUR FIRST INFORM GAME

31

In IF, we talk about each of these locations as a room, even though in this
example none of them has four walls. So let’s use Inform to define those rooms.
Here’s a first attempt:

Object "In front of a cottage"
with description

"You stand outside a cottage. The forest stretches east.",
has light;

Object "Deep in the forest"
with description

"Through the dense foliage, you glimpse a building to the west.
 A track heads to the northeast.",

has light;

Object "A forest clearing"
with description

"A tall sycamore stands in the middle of this clearing.
 The path winds southwest through the trees.",

has light;

Object "At the top of the tree"
with description "You cling precariously to the trunk.",
has light;

Again, we can infer some general principles from these four examples:

• A room definition starts with the word Object and ends, about four lines later,
with a semicolon. Each of the components that appears in your game – not
only the rooms, but also the people, the things that you see and touch,
intangibles like a sound, a smell, a gust of wind – is defined in this way; think
of an “object” simply as the general term for the myriad thingies which
together comprise the model world which your game inhabits.

• The phrase in double quotes following the word Object is the name that the
interpreter uses to provide the player character with a list of the objects
around her: where she is, what she can see, what she’s holding, and so on.

NOTE: we’re using the word “player” to mean both the person who is playing
the game, and the principal protagonist (often known as the player character)
within the game itself. Since the latter – Heidi – is female, we’ll refer to the
player as “she” while discussing this game.

• A keyword with follows, which simply tells the compiler what to expect next.

• The word description, introducing another piece of text which gives more
detail about the object: in the case of a room, it’s the appearance of the
surrounding environment when the player character is in that room. The
textual description is given in double quotes, and is followed by a comma.

• Near the end, the keyword has appears, which again tells the compiler to
expect a certain kind of information.

• The word light says that this object is a source of illumination, and that
therefore the player character can see what’s happening here. There has to

3 • HEIDI: OUR FIRST INFORM GAME

32

be at least one light source in every room (unless you want the player to be
told that “It’s pitch dark and you can’t see a thing”); most commonly, that
light source is the room itself.

A smidgeon of background may help set this into context (there’s more in the
next chapter). An object can have both properties (introduced by the keyword
with) and attributes (written after the word has). A property has both a name (like
description) and a value (like the character string "You stand outside a cottage. The
forest stretches east."); an attribute has merely a name.

In a little while, when you play this game, you’ll observe that it starts like this:

In front of a cottage
You stand outside a cottage. The forest stretches east.

And here you can see how the room’s name (In front of a cottage) and
description (You stand outside a cottage. The forest stretches east.) are used.

Joining up the rooms

We said that this was a first attempt at defining the rooms; it’s fine as far as it goes,
but a few bits of information are missing. If you look at the game’s sketch map,
you can see how the rooms are intended to be connected; from “Deep in the
forest”, for example, the player character should be able to move west towards
the cottage, or northeast to the clearing. Now, although our descriptions mention
or imply these available routes, we also need to explicitly add them to the room
definitions in a form that the game itself can make sense of. Like this:

Object before_cottage "In front of a cottage"
with description

"You stand outside a cottage. The forest stretches east.",
e_to forest,

has light;

Object forest "Deep in the forest"
with description

"Through the dense foliage, you glimpse a building to the west.
 A track heads to the northeast.",

w_to before_cottage,
ne_to clearing,

has light;

Object clearing "A forest clearing"
with description

"A tall sycamore stands in the middle of this clearing.
 The path winds southwest through the trees.",

sw_to forest,
u_to top_of_tree,

has light;

Object top_of_tree "At the top of the tree"
with description "You cling precariously to the trunk.",

d_to clearing,
has light;

3 • HEIDI: OUR FIRST INFORM GAME

33

We’ve made two changes to the room objects.

• First, between the word Object and the object’s name in double quotes, we’ve
inserted a different type of name: a private, internal identification, never seen
by the player; one that we can use within the source file when one object
needs to refer to another object. For example, the first room is identified as
before_cottage, and the second as forest.

Unlike the external name contained in double quotes, the internal identifier
has to be a single word – that is, without spaces. To aid readability, we often
use an underscore character to act as sort of pseudo-space: before_cottage is
a bit clearer than beforecottage.

• Second, we’ve added lines after the object descriptions which use those
internal identifiers to show how the rooms are connected; one line for each
connection. The before_cottage object has this additional line:

e_to forest,

This means that a player standing in front of the cottage can type GO EAST
(or EAST, or just E), and the game will transport her to the room whose
internal identification is forest. If she tries to move in any other direction
from this room, she’ll be told “You can’t go that way”.

What we’ve just defined is a one-way easterly connection:
before_cottage→forest. The forest object has two additional lines:

w_to before_cottage,
ne_to clearing,

The first line defines a westerly connection forest→before_cottage (thus
enabling the player character to return to the cottage), and the second defines
a connection forest→clearing which heads off to the northeast.

Inform provides for eight “horizontal” connections (n_to, ne_to, e_to, se_to,
s_to, sw_to, w_to, nw_to) two “vertical” ones (u_to, d_to) and two specials in_to,
and out_to. You’ll see some of these used for the remaining inter-room
connections.

There’s one last detail to attend to before we can test what we’ve done. You’ll
recollect that our story begins with Heidi standing in front of her cottage. We
need to tell the interpreter that before_cottage is the room where the game starts,
and we do this in the Initialise routine:

[Initialise; location = before_cottage;];

location is a variable, part of the library, which tells the interpreter in which
room the player character currently is. Here, we’re saying that, at the start of the
game, the player character is in the before_cottage room.

Now we can add what we’ve done to the Heidi.inf source file template. At this
stage, you should study the four room definitions, comparing them with the

3 • HEIDI: OUR FIRST INFORM GAME

34

sketch map until you’re comfortable that you understand how to create simple
rooms and define the connections between them.

!==
Constant Story "Heidi";
Constant Headline

"^A simple Inform example
 ^by Roger Firth and Sonja Kesserich.^";

Include "Parser";
Include "VerbLib";

!==
! The game objects

Object before_cottage "In front of a cottage"
with description

"You stand outside a cottage. The forest stretches east.",
e_to forest,

has light;

Object forest "Deep in the forest"
with description

"Through the dense foliage, you glimpse a building to the west.
 A track heads to the northeast.",

w_to before_cottage,
ne_to clearing,

has light;

Object clearing "A forest clearing"
with description

"A tall sycamore stands in the middle of this clearing.
 The path winds southwest through the trees.",

sw_to forest,
u_to top_of_tree,

has light;

Object top_of_tree "At the top of the tree"
with description "You cling precariously to the trunk.",

d_to clearing,
has light;

!==
! Entry point routines

[Initialise; location = before_cottage;];

!==
! Standard and extended grammar

Include "Grammar";

!==

Type this in, as always taking great care with the punctuation – watch those
commas and semicolons. Compile it, and fix any mistakes which the compiler
reports. You can then play the game in its current state. Admittedly, you can’t do

T
Y
P
E

3 • HEIDI: OUR FIRST INFORM GAME

35

very much, but you should be able to move freely among the four rooms that
you’ve defined.

NOTE: in order to minimise the amount of typing that you have to do, the
descriptive text in this game has been kept as short as possible. In a real
game, you would typically provide more interesting descriptions than these.

Adding the bird and the nest

Given what we said earlier, you won’t be surprised to hear that both the bird and
its nest are Inform objects. We’ll start their definitions like this:

Object bird "baby bird"
with description "Too young to fly, the nestling tweets helplessly.",
has ;

Object nest "bird's nest"
with description "The nest is carefully woven of twigs and moss.",
has ;

You can see that these definitions have exactly the same format as the rooms we
defined previously: a one-word internal identifier (bird, nest), and a word or
phrase naming the object for the player’s benefit (baby bird, bird's nest). They
both have some descriptive detail: for a room this is printed when the player first
enters, or when she types LOOK; for other objects it’s printed when she
EXAMINEs that object. What they don’t have are connections (e_to, w_to, etc.
apply only to rooms) or light (it’s not necessary – the rooms ensure that light is
available).

When the game is running, the player will want to refer to these two objects,
saying for instance EXAMINE THE BABY BIRD or PICK UP THE NEST. For
this to work reliably, we need to specify the word (or words) which relate to each
object. Our aim here is flexibility: providing a choice of relevant vocabulary so
that the player can use whatever term seems appropriate to her, with a good
chance of it being understood. We add a line to each definition:

Object bird "baby bird"
with description "Too young to fly, the nestling tweets helplessly.",

name 'baby' 'bird' 'nestling',
has ;

Object nest "bird's nest"
with description "The nest is carefully woven of twigs and moss.",

name 'bird^s' 'nest' 'twigs' 'moss',
has ;

The name introduces a list in single quotes '...'. We call each of those quoted things
a dictionary word, and we do mean “word”, not “phrase” ('baby' 'bird' rather
than 'baby bird'); you can’t uses spaces, commas or periods in dictionary words,
though there’s a space between each one, and the whole list ends with a comma.
The idea is that the interpreter decides which object a player is talking about by
matching what she types against the full set of all dictionary words. If the player

3 • HEIDI: OUR FIRST INFORM GAME

36

mentions BIRD, or BABY BIRD, or NESTLING, it’s the baby bird that she means;
if she mentions NEST, BIRD'S NEST or MOSS, it’s the bird's nest. And if she
types NEST BABY or BIRD TWIGS, the interpreter will politely say that it
doesn’t understand what on earth she’s talking about.

NOTE: you’ll notice the use of 'bird^s' to define the dictionary word BIRD'S;
this oddity is necessary because the compiler expects the single quotes in the
list always to come in pairs – one at the start of the dictionary word, and one
at the end. If we had typed 'bird's' then the compiler would find the opening
quote, the four letters b i r and d, and what looks like the closing quote. So
far so good; it’s read the word BIRD and now expects a space before the next
opening quote... but instead finds s' which makes no sense. In cases like this
we must use the circumflex ^ to represent the apostrophe, and the compiler
then treats bird's as a dictionary word.

You may be wondering why we need a list of name words for the bird and its nest,
yet we didn’t when we defined the rooms? It’s because the player can’t interact
with a room in the same way as with other objects; for example, she doesn’t need
to say EXAMINE THE FOREST – just being there and typing LOOK is sufficient.

The bird’s definition is complete, but there’s an additional complexity with the
nest: we need to be able to put the bird into it. We do this by labelling the nest
as a container – able to hold other objects – so that the player can type PUT (or
INSERT) BIRD IN (or INTO) NEST. Furthermore, we label it as open; this
prevents the interpreter from asking us to open it before putting in the bird.

Object nest "bird's nest"
with description "The nest is carefully woven of twigs and moss.",

name 'bird^s' 'nest' 'twigs' 'moss',
has container open;

Both objects are now defined, and we can incorporate them into the game. To
do this, we need to choose the locations where the player will find them. Let’s say
that the bird is found in the forest, while the nest is in the clearing. This is how
we set this up:

Object bird "baby bird" forest
with description "Too young to fly, the nestling tweets helplessly.",

name 'baby' 'bird' 'nestling',
has ;

Object nest "bird's nest" clearing
with description "The nest is carefully woven of twigs and moss.",

name 'bird^s' 'nest' 'twigs' 'moss',
has container open;

Read that first line as: “Here’s the definition of an object which is identified
within this file as bird, which is known to the player as baby bird, and which is
initially located inside the object identified within this file as forest.”

Where in the source file do these new objects fit? Well, anywhere really, but
you’ll find it convenient to insert them following the rooms where they’re found.

T
Y
P
E

3 • HEIDI: OUR FIRST INFORM GAME

37

This means adding the bird just after the forest, and the nest just after the clearing.
Here’s the middle piece of the source file:

!==
! The game objects

Object before_cottage "In front of a cottage"
with description

"You stand outside a cottage. The forest stretches east.",
e_to forest,

has light;

Object forest "Deep in the forest"
with description

"Through the dense foliage, you glimpse a building to the west.
 A track heads to the northeast.",

w_to before_cottage,
ne_to clearing,

has light;

Object bird "baby bird" forest
with description "Too young to fly, the nestling tweets helplessly.",

name 'baby' 'bird' 'nestling',
has ;

Object clearing "A forest clearing"
with description

"A tall sycamore stands in the middle of this clearing.
 The path winds southwest through the trees.",

sw_to forest,
u_to top_of_tree,

has light;

Object nest "bird's nest" clearing
with description "The nest is carefully woven of twigs and moss.",

name 'bird^s' 'nest' 'twigs' 'moss',
has container open;

Object top_of_tree "At the top of the tree"
with description "You cling precariously to the trunk.",

d_to clearing,
has light;

!==

Make those changes, recompile the game, play it and you’ll see this:

Deep in the forest
Through the dense foliage, you glimpse a building to the west. A track heads
to the northeast.

You can see a baby bird here.

>

Adding the tree and the branch

The description of the clearing mentions a tall sycamore tree, up which the
player character supposedly “climbs”. We’d better define it:

3 • HEIDI: OUR FIRST INFORM GAME

38

Object tree "tall sycamore tree" clearing
with description

"Standing proud in the middle of the clearing,
 the stout tree looks easy to climb.",

name 'tall' 'sycamore' 'tree' 'stout' 'proud',
has scenery;

Everything there should be familiar, apart from that scenery at the end. We’ve
already mentioned the tree in the description of the forest clearing, so we don’t
want the interpreter adding “You can see a tall sycamore tree here” afterwards,
as it does for the bird and the nest. By labelling the tree as scenery we suppress
that, and also prevent it from being picked up by the player character.

One final object: the branch at the top of the tree. Again, not many surprises in
this definition:

Object branch "wide firm bough" top_of_tree
with description "It's flat enough to support a small object.",

name 'wide' 'firm' 'flat' 'bough' 'branch',
has static supporter;

The only new things are those two labels. static is similar to scenery: it prevents
the branch from being picked up by the player character, but doesn’t suppress
mention of it when describing the setting. And supporter is rather like the
container that we used for the nest, except that this time the player character can
put other objects onto the branch. (In passing, we’ll mention that an object can’t
normally be both a container and a supporter.) And so here are our objects again:

!==
! The game objects

Object before_cottage "In front of a cottage"
with description

"You stand outside a cottage. The forest stretches east.",
e_to forest,

has light;

Object forest "Deep in the forest"
with description

"Through the dense foliage, you glimpse a building to the west.
 A track heads to the northeast.",

w_to before_cottage,
ne_to clearing,

has light;

Object bird "baby bird" forest
with description "Too young to fly, the nestling tweets helplessly.",

name 'baby' 'bird' 'nestling',
has ;

Object clearing "A forest clearing"
with description

"A tall sycamore stands in the middle of this clearing.
 The path winds southwest through the trees.",

sw_to forest,
u_to top_of_tree,

has light;

T
Y
P
E

T
Y
P
E

3 • HEIDI: OUR FIRST INFORM GAME

39

Object nest "bird's nest" clearing
with description "The nest is carefully woven of twigs and moss.",

name 'bird^s' 'nest' 'twigs' 'moss',
has container open;

Object tree "tall sycamore tree" clearing
with description

"Standing proud in the middle of the clearing,
 the stout tree looks easy to climb.",

name 'tall' 'sycamore' 'tree' 'stout' 'proud',
has scenery;

Object top_of_tree "At the top of the tree"
with description "You cling precariously to the trunk.",

d_to clearing,
has light;

Object branch "wide firm bough" top_of_tree
with description "It's flat enough to support a small object.",

name 'wide' 'firm' 'flat' 'bough' 'branch',
has static supporter;

!==

Once again, make the changes, recompile, and investigate what you can do in
your model world.

Finishing touches

Our first pass at the game is nearly done; just two more changes to describe. The
first is easy: Heidi wouldn’t be able to climb the tree carrying the bird and the
nest separately: we want the player character to put the bird into the nest first.
One easy way to enforce this is by adding a line near the top of the file:

!==
Constant Story "Heidi";
Constant Headline

"^A simple Inform example
 ^by Roger Firth and Sonja Kesserich.^";

Constant MAX_CARRIED 1;

The value of MAX_CARRIED limits the number of objects that the player character can
be holding at any one time; by setting it to 1, we’re saying that she can carry the
bird or the nest, but not both. However, the limit ignores the contents of container
or supporter objects, so the nest with the bird inside it is still counted as one object.

The other change is slightly more complex and more important: there’s currently
no way to “win” the game! The goal is for the player character to put the bird in
the nest, take the nest to the top of the tree, and place it on the branch; when that
happens, the game should be over. This is one way of making it happen:

T
Y
P
E

3 • HEIDI: OUR FIRST INFORM GAME

40

Object branch "wide firm bough" top_of_tree
with description "It's flat enough to support a small object.",

name 'wide' 'firm' 'flat' 'bough' 'branch',
each_turn [; if (nest in branch) deadflag = 2;],

has static supporter;

NOTE: here’s an explanation of what’s going on. If you find this difficult to
grasp, don’t worry. It’s the hardest bit so far, and it introduces several new
concepts all at once. Later in the guide, we’ll explain those concepts more
clearly, so you can just skip this bit if you want.

The variable deadflag, part of the library, is normally 0. If you set its value to
2, the interpreter notices and ends the game with “You have won”. The
statement:

if (nest in branch) deadflag = 2;

should be read as: “Test whether the nest is currently in the branch (if the
branch is a container) or on it (if the branch is a supporter); if it is, set the value
of deadflag to 2; if it isn’t, do nothing.” The surrounding part:

each_turn [; ...],

should be read as: “At the end of each turn (when the player is in the same
room as the branch), do whatever is written inside the square brackets”. So,
putting that all together:
• At the end of each turn (after the player has typed something and pressed

the Enter key, and the interpreter has done whatever was requested) the
interpreter checks whether the player and the branch are in the same
room. If not, nothing happens. If they’re together, it looks to see where
the nest is. Initially it’s in the clearing, so nothing happens.

• Also at the end of each turn, the interpreter checks the value of deadflag.
Usually it’s 0, so nothing happens.

• Finally the player character puts the nest on the branch. “Aha!” says the
interpreter (to itself, of course), and sets the value of deadflag to 2.

• Immediately afterwards, (another part of) the interpreter checks and
finds that the value of deadflag has changed to 2, which means that the
game is successfully completed; so, it says to the player, “you’ve won!”

That’s as far as we’ll take this example for now. Make those final changes,
recompile, and test what you’ve achieved. You’ll probably find a few things that
could be done better – even on a simple game like this there’s considerable scope
for improvement – so we’ll revisit Heidi in her forest shortly. First, though, we’ll
recap what we’ve learnt so far.

T
Y
P
E

4 • REVIEWING THE BASICS

41

4 • Reviewing the basics

G was a gamester, who had but ill-luck;
H was a hunter, and hunted a buck.

oing through the design of our first game in the previous chapter has
introduced all sorts of Inform concepts, often without giving you
much detail about what’s been happening. So let’s review some of
what we’ve learnt so far, in a slightly more organised fashion. We’ll

talk about “Constants and variables” on page 41, “Object definitions” on
page 42, “Object relationships – the object tree” on page 44, “Things in quotes”
on page 47, and “Routines and statements” on page 48.

Constants and variables

Superficially similar, constants and variables are actually very different beasts.

Constants

A constant is a name to which a value is given once and once only; you can’t
later use that name to stand for a different value. Think of it as a stone tablet on
which you carve a number: a carving can’t be undone, so that you see the same
number every time you look at the stone.

So far, we’ve seen a Constant being set up with its value as a string of characters:

Constant Story "Heidi";

and as a number:

Constant MAX_CARRIED 1;

Those two examples represent the most common ways in which constants are
used in Inform.

Variables

A variable is a name to which a value is given, but that value can be changed to
a different one at any time. Think of it as a blackboard on which you mark a
number in chalk: whenever you need to, just wipe the board and write up a new
number.

We haven’t set up any variables of our own yet, though we’ve used a couple
which the library created like this:

Global location;
Global deadflag;

The value of a global variable created in this way is initially 0, but you can
change it at any time. For example, we used the statement:

4 • REVIEWING THE BASICS

42

location = before_cottage;

to reset the value of the location variable to the before_cottage object, and we
wrote:

if (nest in branch) deadflag = 2;

to reset the value of the deadflag variable to 2.

Later, we’ll talk about the local variable (see “Routines” on page 157) and about
using object properties as variables (see “Objects” on page 155).

Object definitions

The most important information you should have gleaned from the previous
chapter is that your entire game is defined as a series of objects. Each room is an
object, each item that the player sees and touches is an object; indeed the player
herself is also an object (one that’s automatically defined by the library).

The general model of an object definition looks like this:

The definition starts with the word Object and ends with a semicolon; in between
are three major blocks of information:

• immediately after the word Object is the header information;

• the word with introduces the object’s properties;

• the word has introduces the object’s attributes.

Object headers

An object header comprises up to three items, all optional:

• An internal obj_id by which other objects refer to this object. It’s a single
word (though it can contain digits and underscores) of up to thirty-two
characters, and it must be unique within the game. You can omit the obj_id
if this object isn’t referred to by any other objects.

For example: bird, tree, top_of_tree.

• An external_name, in double quotes, which is what the interpreter uses when
referring to the object. It can be one or more words, and need not be unique

Object obj_id "external_name" parent_obj_id

with property value ,
property value ,
...
property value ,

has attribute attribute ... attribute

;

4 • REVIEWING THE BASICS

43

(for instance, you might have several "Somewhere in the desert" rooms).
Although not mandatory, it’s best to give every object an external_name.

For example: "baby bird", "tall sycamore tree", "At the top of the tree".

• The internal obj_id of another object which is the initial location of this object
(its “parent” – see the next section) at the start of the game. This is omitted
from objects which have no initial parent; it’s always omitted from a room.

For example: the definition of the bird starts like this, specifying that at the
start of the game, it can be found in the forest room (though later the player
character will pick it up and move it around):

Object bird "baby bird" forest
...

The tree starts like this; the only real difference is that, because the player
character can’t move a scenery object, it’s always going to be in the clearing:

Object tree "tall sycamore tree" clearing
...

NOTE: there’s an alternative method for defining an object’s initial location,
using “arrows” rather than the parent’s internal obj_id. For example, the
definition of the bird could have started like this:

Object -> bird "baby bird"
...

We don’t use the arrows method in this guide, though we do describe how it
works in “Setting up the object tree” on page 163.

Object properties

An object’s property definitions are introduced by the with keyword. An object
can have any number of properties, and they can be defined in any order. Each
definition has two parts: a name, and a value; there’s a space between the two
parts, and a comma at the end.

Think of each property as a variable which is specifically associated with that
object. The variable’s initial setting is the supplied value; if necessary, it can be
reset to other values during play (though in fact most property values don’t
change in this way).

Here are examples of the properties that we’ve come across so far:

description "The nest is carefully woven of twigs and moss.",
e_to forest,
name 'baby' 'bird' 'nestling',
each_turn [; if (nest in branch) deadflag = 2;],

By happy coincidence, those examples also demonstrate most of the different
types of value which can be assigned to a property. The value associated with the
description property in this particular example is a string of characters in double

4 • REVIEWING THE BASICS

44

quotes; the value associated with this e_to property is the internal identity of an
object; the name property is a bit unusual – its value is a list of dictionary words,
each in single quotes; the each_turn property has a value which is an embedded
routine (see “Embedded routines” on page 50). The only other type of value
which is commonly found is a simple number; for example:

capacity 10,

In all, the library defines around forty-eight standard properties – like name and
each_turn – which you can associate with your objects; there’s a complete list in
“Object properties” on page 238. And in “William Tell: in his prime” on page 81
we show you how to invent your own property variables.

Object attributes

An object’s attribute list is introduced by the has keyword. An object can have
any number of attributes, and they can be listed in any order, with a space
between each.

As with properties, you can think of each attribute as a variable which is
specifically associated with that object. However, an attribute is a much more
limited form of variable, since it can have only two possible states: present, and
absent (also known as set/clear, on/off, or true/false; incidentally, a two-state
variable like this is often called a flag). Initially, an attribute is either present (if
you mention its name in the list) or absent (otherwise); if necessary, its state can
change during play (and this is relatively common). We often say that a certain
object currently has a certain attribute, or that conversely it hasn’t got it.

The attributes that we’ve come across so far are:

container light open scenery static supporter

Each of those answers a question: Is this object a container? Does it provide light?
and so on. If the attribute is present then the answer is Yes; if the attribute isn’t
present, the answer is No.

In all, the library defines around thirty standard attributes which you can
associate with your objects; there’s a complete list in “Object attributes” on
page 241.

Object relationships – the object tree

Not only is your game composed entirely of objects, but also Inform takes great
care to keep track of the relationships between those objects. By “relationship”
we don’t mean that Walter is Wilhelm’s son, while Helga and Wilhelm are just
good friends; it’s a much more comprehensive exercise in recording exactly
where each object is located, relative to the other objects in the game.

Despite what we just said, Inform relationships are managed in terms of parent
and child objects, though in a much broader sense than Wilhelm and Walter.

4 • REVIEWING THE BASICS

45

When the player character is in a particular room – for example the forest – we
can say that:

• the forest object is the parent of the player object, or alternatively

• the player object is a child of the forest object.

Also, if the player is carrying an object – for example the nest – we say that:

• the player object is the parent of the nest object, or that

• the nest object is a child of the player object.

Note the emphasis there: an object has exactly one parent (or no parent at all), but
can have any number of child objects (including none).

For an example of an object having more than one child, think about the way we
defined the nest and tree objects:

Object nest "bird's nest" clearing
...

Object tree "tall sycamore tree" clearing
...

We used the third of the header items to say that the clearing was the parent of
the nest, and also that the clearing was the parent of the tree; that is, both nest
and tree are child objects of the clearing.

NOTE: a “room” isn’t anything magical; it’s just an object which never has a
parent, and which may from time to time have the player object as a child.

When we defined the bird, we placed it in the forest, like so:

Object bird "baby bird" forest
...

We didn’t place any other objects in that room, so at the start of the game the
forest was the parent of the bird (and the bird was the only child of the forest).
But what happens when the player character, initially in the before_cottage room,
goes EAST to the forest? Answer: the player’s parent is now the forest, and the
forest has two children – the bird and the player. This is a key principle of the
way Inform manages its objects: the parent–child relationships between objects
change continuously, often dramatically, as the game progresses.

Another example of this: suppose the player character picks up the bird. This
causes another change in the relationships. The bird is now a child of the player
(and not of the forest), and the player is both a parent (of the bird) and a child (of
the forest).

In this diagram, we show how the object relationships change during the course
of the game. The straight lines represent parent–child relationships, with the
parent object at the top of the line, and the child object at the bottom.

4 • REVIEWING THE BASICS

46

In this short example, we’ve taken a lot of time and space to spell out exactly how
the objects relationship patterns – generally known as the object tree – appear

1. At the start of the game:

2. The player types:
GO EAST

3. The player types:
TAKE THE BIRD

4. The player types:
GO NORTHEAST

5. The player types:
PUT BIRD IN NEST

6. The player types:
TAKE NEST

7. The player types:
UP

8. The player types:
PUT NEST ON BRANCH

4 • REVIEWING THE BASICS

47

at each stage. Normally you wouldn’t bother with this much detail (a) because the
interpreter does most of the work for you, and (b) because in a real game there
are usually too many objects for you to keep track of. What’s important is that
you understand the basic principles: at any moment in time an object either has
no parent (which probably means either that it’s a room, or that it’s floating in
hyperspace and not currently part of the game) or exactly one parent – the object
that it’s “in” or “on” or “a part of”. However, there’s no restriction on the number
of children that an object can have.

There’s a practical use for these relationships, covered in detail further on. As a
designer, you can refer to the current parent or children of any given object with
the parent, child and children routines, and this is one feature that you will be
using frequently. There are also other routines associated with the object tree, to
help you keep track of the objects or move them around. We’ll see them one by
one in the next chapters. For a quick summary, see “Objects” on page 155.

Things in quotes

Inform makes careful distinction between double and single quotes.

Double quotes

Double quotes "..." surround a string – a letter, a word, a paragraph, or almost
any number of characters – which you want the interpreter to display while the
game is being played. You can use the tilde ~ to represent a double quote inside
the string, and the circumflex ^ to represent a newline (line break) character.
Upper-case and lower-case letters are treated as different.

A long string can be split over several lines; Inform transforms each line break
(and any spaces around it) into a single space (extra spaces not at a line break are
preserved, though). These two strings are equivalent:

"This is a string of characters."

"This
is

a string
of characters."

When the interpreter displays a long character string – for example, while
describing a feature-packed room – it employs automatic word-wrapping to fit
the text to the player’s screen. This is where you might insert ̂ characters to force
line breaks to appear, thus presenting the text as a series of paragraphs.

So far, we’ve seen strings used as the value of a Constant:

Constant Headline
"^A simple Inform example
 ^by Roger Firth and Sonja Kesserich.^";

which could equally have been defined thus:

4 • REVIEWING THE BASICS

48

Constant Headline
"^A simple Inform example^by Roger Firth and Sonja Kesserich.^";

and as the value of an object description property:

description "Too young to fly, the nestling tweets helplessly.",

Later, you’ll find that they’re also very common in print statements.

Single quotes

Single quotes '...' surround a dictionary word. This has to be a single word –
no spaces – and generally contains only letters (and occasionally numbers and
hyphens), though you can use ^ to represent an apostrophe inside the word.
Upper-case and lower-case letters are treated as identical; also, the interpreter
normally looks only at the first nine characters of each word that the player types.

When the player types a command, the interpreter divides what was typed into
individual words, which it then looks up in the dictionary. If it finds all the words,
and they seem to represent a sensible course of action, that’s what happens next.

So far, we’ve seen dictionary words used as the values of an object name property:

name 'bird^s' 'nest' 'twigs' 'moss',

and indeed that’s just about the only place where they commonly occur.

You’ll save yourself a lot of confusion by remembering the distinction: Double
quotes for Output, Single quotes for Input (DOSI).

Routines and statements

A routine is a collection of statements, which are performed (or we often say “are
executed”) at run-time by the interpreter. There are two types of routine, and
about two dozen types of statement (there’s a complete list in “Statements” on
page 152; see also “Inform language” on page 229).

Statements

A statement is an instruction telling the interpreter to perform a particular task
– to “do something” – while the game is being played. A real game usually has
lots and lots of statements, but so far we’ve encountered only a few. We saw:

location = before_cottage;

which is an example of an assignment statement, so-called because the equals
sign = assigns a new value (the internal ID of our before_cottage room) to a
variable (the global variable location which is part of the library). Later we saw:

if (nest in branch) deadflag = 2;

which is actually two statements: an assignment, preceded by an if statement:

if (nest in branch) ...

4 • REVIEWING THE BASICS

49

The if statement tests a particular condition; if the condition is true, the
interpreter executes whatever statement comes next; if it isn’t true, the interpreter
ignores the next statement. In this example, the interpreter is testing whether the
nest object is “in” or “on” (which we now know means “is a child of”) the branch
object. For most of the game, that condition is not true, and so the interpreter
ignores the following statement. Eventually, when the condition becomes true,
the interpreter executes that statement: it performs an assignment:

deadflag = 2;

which changes the value of the library variable deadflag from its current value
to 2. Incidentally, if statements are often written on two lines, with the
“controlled” statement indented. This makes it easier to read, but doesn’t change
the way that it works:

if (nest in branch)
deadflag = 2;

The thing that’s being controlled by the if statement doesn’t have to be an
assignment; it can be any kind of statement. In fact, you can have lots of
statements, not just one, controlled by an if statement. We’ll talk about these
other possibilities later. For now, just remember that the only place where you’ll
find statements are within standalone routines and embedded routines.

Standalone routines

A standalone routine is a series of statements, collected together and given a
name. When the routine is “called” – by its given name – those statements are
executed. Here’s the one that we’ve defined:

[Initialise; location = before_cottage;];

Because it’s such a tiny routine, we placed it all on a single line. Let’s rewrite it to
use several lines (as with the if statement, this improves the readability, but
doesn’t affect how it works);

[Initialise;
location = before_cottage;

];

The [Initialise; is the start of the routine, and defines the name by which it can
be “called”. The]; is the end of the routine. In between are the statements –
sometimes known as the body of the routine – which are executed when the
routine is called. And how is that done? By a statement like this:

Initialise();

That single statement, the routine’s name followed by opening and closing
parentheses, is all that it takes to call a routine. When it comes across a line like
this, the interpreter executes the statements – in this example there’s only one,
but there may be ten, twenty, even a hundred of them – in the body of the

4 • REVIEWING THE BASICS

50

routine. Having done that, the interpreter resumes what it was doing, on the line
following the Initialise(); call.

NOTE: you may have noticed that, although we’ve defined a routine named
Initialise, we’ve never actually called it. Don’t worry – the routine is called,
by the Inform library, right at the start of a game.

Embedded routines

An embedded routine is much like a standalone routine, though it doesn’t have
a name and doesn’t end in a semicolon. This is the one that we defined:

[; if (nest in branch) deadflag = 2;]

except that we didn’t write it in isolation like that: instead, we defined it to be the
value of an object property:

each_turn [; if (nest in branch) deadflag = 2;],

which would have worked just the same if we’d written it like this:

each_turn [;
if (nest in branch)

deadflag = 2;
],

All embedded routines are defined in this manner: as the value of an object
property. That’s where they’re embedded – inside an object. The introductory
characters [; maybe look a little odd, but it’s really only the same syntax as for a
standalone routine, only without a name between the [and ;.

For calling an embedded routine, thus causing the statements it contains to be
executed, the method that we described for a standalone routine won’t work. An
embedded routine has no name, and needs none; it’s automatically called by the
library at appropriate moments, which are determined by the role of the
property for which it is the value. In our example, that’s at the end of every turn
in which the player character is in the same room as the branch. Later, we’ll see
other examples of embedded routines, each designed to perform a task which is
appropriate for the property whose value it is; we’ll also see that it is possible to
call an embedded routine yourself, using an obj_id.property() syntax – in this
example, we could call the routine by writing branch.each_turn().

There’s more about these topics in “Routines and arguments” on page 59,
“Routines” on page 157 and in “The marketplace” on page 91.

That ends our review of the ground covered in our first game. We’ll have more
to say about most of this later, but we’re trying not to overload you with facts at
this early stage. What we’d like you to do is to look back at the source of the
game, and ensure that you can recognise all the elements which this chapter has
described. Then, we’ll move on to fix a few of the game’s more important defects.

5 • HEIDI REVISITED

51

5 • Heidi revisited

I was an innkeeper, who loved to carouse;
J was a joiner, and built up a house.

n even the simplest story, there’s bound to be scope for the player
to attempt activities that you hadn’t anticipated. Sometimes there
may be alternative ways of approaching a problem: if you can’t be
sure which approach the player will take, you really ought to allow

for all possibilities. Sometimes the objects you create and the descriptions you
provide may suggest to the player that doing such-and-such should be possible,
and, within reason, you ought to allow for that also. The basic game design is
easy: what takes the time, and makes a game large and complex, is taking care of
all the other things that the player may think of trying.

Here, we try to illustrate what this means by addressing a few of the more glaring
deficiencies in our first game.

Listening to the bird

Here’s a fragment of the game being played:

Deep in the forest
Through the dense foliage, you glimpse a building to the west. A track heads
to the northeast.

You can see a baby bird here.

>EXAMINE THE BIRD
Too young to fly, the nestling tweets helplessly.

>LISTEN TO BIRD
You hear nothing unexpected.

>

That’s not too smart, is it? Our description specifically calls the player’s attention
to the sound of the bird – and then she finds out that we’ve got nothing special
to say about its helpless tweeting.

The library has a stock of actions and responses for each of the game’s defined
verbs, so it can handle most of the player’s input with a default, standard
behaviour instead of remaining impertinently silent or saying that it doesn’t
understand what the player intends. “You hear nothing unexpected” is the
library’s standard LISTEN response, good enough after LISTEN TO NEST or
LISTEN TO TREE, but fairly inappropriate here; we really need to substitute a
more relevant response after LISTEN TO BIRD. Here’s how we do it:

5 • HEIDI REVISITED

52

Object bird "baby bird" forest
with description "Too young to fly, the nestling tweets helplessly.",

name 'baby' 'bird' 'nestling',
before [; Listen:

print "It sounds scared and in need of assistance.^";
return true;

],
has ;

We’ll go through this a step at a time:

1. We’ve added a new before property to our bird object. The interpreter looks
at the property before attempting to perform any action which is directed
specifically at this object:

before [; ...],

2. The value of the property is an embedded routine, containing a label and two
statements:

Listen:
print "It sounds scared and in need of assistance.^";
return true;

3. The label is the name of an action, in this case Listen. What we’re telling the
interpreter is: if the action that you’re about to perform on the bird is a Listen,
execute these statements first; if it’s any other action, carry on as normal. So,
if the player types EXAMINE BIRD, PICK UP BIRD, PUT BIRD IN NEST,
HIT BIRD or FONDLE BIRD, then she’ll get the standard response. If she
types LISTEN TO BIRD, then our two statements get executed before
anything else happens. We call this “trapping” or “intercepting” the action of
Listening to the bird.

4. The two statements that we execute are, first:

print "It sounds scared and in need of assistance.^";

which causes the interpreter to display the string given in double quotes;
remember that a ^ character in a string appears as a newline. Second, we
execute:

return true;

which tells the interpreter that it doesn’t need to do anything else, because
we’ve handled the Listen action ourselves. And the game now behaves like
this – perfect:

>LISTEN TO BIRD
It sounds scared and in need of assistance.

>

The use of the return true statement probably needs a bit more explanation. An
object’s before property traps an action aimed at that object right at the start,
before the interpreter has started to do anything. That’s the point at which the
statements in the embedded routine are executed. If the last of those statements

T
Y
P
E

5 • HEIDI REVISITED

53

is return true then the interpreter assumes that the action has been dealt with by
those statements, and so there’s nothing left to do: no action, no message;
nothing. On the other hand, if the last of the statements is return false then the
interpreter carries on to perform the default action as though it hadn’t been
intercepted. Sometimes that’s what you want it to do, but not here: if instead we’d
written this:

Object bird "baby bird" forest
with description "Too young to fly, the nestling tweets helplessly.",

name 'baby' 'bird' 'nestling',
before [; Listen:

print "It sounds scared and in need of assistance.^";
return false;

],
has ;

then the interpreter would first have displayed our string, and then carried on
with its normal response, which is to display the standard message:

>LISTEN TO BIRD
It sounds scared and in need of assistance.
You hear nothing unexpected.

>

The technique that we’ve used here – intercepting an action aimed at a particular
object in order to do something appropriate for that object – is one that we’ll use
again and again.

Entering the cottage

At the start of the game the player character stands “outside a cottage”, which
might lead her to believe that she can go inside:

In front of a cottage
You stand outside a cottage. The forest stretches east.

>IN
You can't go that way.

>

Again, that isn’t perhaps the most appropriate response, but it’s easy to change:

Object before_cottage "In front of a cottage"
with description

"You stand outside a cottage. The forest stretches east.",
e_to forest,
in_to "It's such a lovely day -- much too nice to go inside.",
cant_go "The only path lies to the east.",

has light;

The in_to property would normally link to another room, in the same way as the
e_to property contain the internal ID of the forest object. However, if instead you
set its value to be a string, the interpreter displays that string when the player tries

T
Y
P
E

5 • HEIDI REVISITED

54

the IN direction. Other – unspecified – directions like NORTH and UP still elicit
the standard “You can’t go that way” response, but we can change that too, by
supplying a cant_go property whose value is a suitable string. We then get this
friendlier behaviour:

In front of a cottage
You stand outside a cottage. The forest stretches east.

>IN
It's such a lovely day -- much too nice to go inside.

>NORTH
The only path lies to the east.

>EAST

Deep in the forest
...

There’s another issue here; since we haven’t actually implemented an object to
represent the cottage, a perfectly reasonable EXAMINE COTTAGE command
receives the obviously nonsensical reply “You can’t see any such thing”. That’s
easy to fix; we can add a new cottage object, making it a piece of scenery just like
the tree:

Object cottage "tiny cottage" before_cottage
with description "It's small and simple, but you're very happy here.",

name 'tiny' 'cottage' 'home' 'house' 'hut' 'shed' 'hovel',
has scenery;

This solves the problem, but promptly gives us another unreasonable response:

In front of a cottage
You stand outside a cottage. The forest stretches east.

>ENTER COTTAGE
That’s not something you can enter.

>

The situation here is similar to our LISTEN TO BIRD problem, and the solution
we adopt is similar as well:

Object cottage "tiny cottage" before_cottage
with description "It's small and simple, but you're very happy here.",

name 'tiny' 'cottage' 'home' 'house' 'hut' 'shed' 'hovel',
before [; Enter:

print_ret "It's such a lovely day -- much too nice to go inside.";
],

has scenery;

We use a before property to intercept the Enter action applied to the cottage
object, so that we can display a more appropriate message. This time, however,
we’ve done it using one statement rather than two. It turns out that the sequence
“print a string which ends with a newline character, and then return true” is so

T
Y
P
E

5 • HEIDI REVISITED

55

frequently needed that there’s a special statement which does it all. That is, this
single statement (where you’ll note that the string doesn’t need to end in ^):

print_ret "It's such a lovely day -- much too nice to go inside.";

works exactly the same as this pair of statements:

print "It's such a lovely day -- much too nice to go inside.^";
return true;

We could have used the shorter form when handling LISTEN TO BIRD, and we
will use it from now on.

Climbing the tree

In the clearing, holding the nest and looking at the tree, the player is meant to
type UP. Just as likely, though, she’ll try CLIMB TREE (which currently gives the
completely misleading response “I don’t think much is to be achieved by that”).
Yet another opportunity to use a before property – they really are very useful –
but now with a difference.

Object tree "tall sycamore tree" clearing
with description

"Standing proud in the middle of the clearing,
 the stout tree looks easy to climb.",

name 'tall' 'sycamore' 'tree' 'stout' 'proud',
before [; Climb:

PlayerTo(top_of_tree);
return true;

],
has scenery;

This time, when we intercept the Climb action applied to the tree object, it’s not
in order to display a better message; it’s because we want to move the player
character to another room, just as if she’d typed UP. Relocating the player
character is actually quite a complex business, but fortunately all of that
complexity is hidden: there’s a standard library routine to do the job, not one
that we’ve written, but one that’s provided as part of the Inform system.

You’ll remember that, when we first mentioned routines (see “Standalone
routines” on page 49), we used the example of Initialise() and said that “the
routine’s name followed by opening and closing parentheses is all that it takes to
call a routine”. That was true for Initialise(), but not quite the whole story. To
move the player character, we’ve got to specify where we want her to go, and we
do that by supplying the internal ID of the destination room within the opening
and closing parentheses. That is, instead of just PlayerTo() we call
PlayerTo(top_of_tree), and we describe top_of_tree as the routine’s argument.

Although we’ve moved the player character to another room, we’re still in the
middle of the intercepted Climb action. As previously, we need to tell the
interpreter that we’ve dealt with the action, and so we don’t want the standard
rejection message to be displayed. The return true statement does that, as usual.

T
Y
P
E

5 • HEIDI REVISITED

56

Dropping objects from the tree

In a normal room like the forest or the clearing, the player can DROP something
she’s carrying and it’ll effectively fall to the ground at her feet. Simple,
convenient, predictable – except when the player is at the top of the tree. Should
she DROP something from up there, having it land nearby might seem a bit
improbable; much more likely that it would fall to the clearing below.

It looks like we might want to intercept the Drop action, but not quite in the way
we’ve been doing up until now. For one thing, we don’t want to complicate the
definitions of the bird and the nest and any other objects we may introduce: much
better to find a general solution that will work for all objects. And second, we
need to recognise that not all objects are droppable; the player can’t, for
example, DROP THE BRANCH.

The best approach to the second problem is to intercept the Drop action after it
has occurred, rather than beforehand. That way, we let the library take care of
objects which aren’t being held or which can’t be dropped, and only become
involved once a Drop has been successful. And the best approach to the first
problem is to do this particular interception not on an object-by-object basis, as
we have been doing so far, but instead for every Drop which takes place in our
troublesome top_of_tree room. This is what we have to write:

Object top_of_tree "At the top of the tree"
with description "You cling precariously to the trunk.",

d_to clearing,
after [; Drop:

move noun to clearing;
return false;

],
has light;

Let’s again take it a step at a time:

1. We’ve added a new after property to our top_of_tree object. The interpreter
looks at the property subsequent to performing any action in this room:

after [; ...],

2. The value of the property is an embedded routine, containing a label and two
statements:

Drop:
move noun to clearing;
return false;

3. The label is the name of an action, in this case Drop. What we’re telling the
interpreter is: if the action that you’ve just performed here is a Drop, execute
these statements before telling the player what you’ve done; if it’s any other
action, carry on as normal.

4. The two statements that we execute are first:

move noun to clearing;

T
Y
P
E

5 • HEIDI REVISITED

57

which takes the object which has just been moved from the player object to
the top_of_tree object (by the successful Drop action) and moves it again so
that its parent becomes the clearing object. That noun is a library variable that
always contains the internal ID of the object which is the target of the current
action. If the player types DROP NEST, noun contains the internal ID of the
nest object; if she types DROP NESTLING then noun contains the internal ID
of the bird object. Second, we execute:

return false;

which tells the interpreter that it should now let the player know what’s
happened. Here’s the result of all this:

At the top of the tree
You cling precariously to the trunk.

You can see a wide firm bough here.

>DROP NEST
Dropped.

>LOOK

At the top of the tree
You cling precariously to the trunk.

You can see a wide firm bough here.

>DOWN

A forest clearing
A tall sycamore stands in the middle of this clearing. The path winds
southwest through the trees.

You can see a bird's nest (in which is a baby bird) here.

>

Of course, you might think that the standard message “Dropped” is slightly
unhelpful in these non-standard circumstances. If you prefer to hint at what’s just
happened, you could use this alternative solution:

Object top_of_tree "At the top of the tree"
with description "You cling precariously to the trunk.",

d_to clearing,
after [; Drop:

move noun to clearing;
print_ret "Dropped... to the ground far below.";

],
has light;

The print_ret statement does two things for us: displays a more informative
message, and returns true to tell the interpreter that there’s no need to let the
player know what’s happened – we’ve handled that ourselves.

5 • HEIDI REVISITED

58

Is the bird in the nest?

The game ends when the player character puts the nest onto the branch. Our
assumption here is that the bird is inside the nest, but this might not be so; the
player may have first taken up the bird and then gone back for the nest, or vice
versa. It would be better not to end the game until we’d checked for the bird
actually being in the nest; fortunately, that’s easy to do:

Object branch "wide firm bough" top_of_tree
with description "It's flat enough to support a small object.",

name 'wide' 'firm' 'flat' 'bough' 'branch',
each_turn [; if (bird in nest && nest in branch) deadflag = 2;],

has static supporter;

The extended if statement:

if (bird in nest && nest in branch) deadflag = 2;

should now be read as: “Test whether the bird is currently in (or on) the nest, and
whether the nest is currently on (or in) the branch; if both parts are true, set the
value of deadflag to 2; otherwise, do nothing”.

Summing up

You should by now have some appreciation of the need not only to handle the
obvious actions which were at the forefront of your mind when designing the
game, but also as many as you can of the other possible ways that a player may
choose to interact with the objects presented to her. Some of those ways will be
highly intelligent, some downright dumb; in either case you should try to ensure
that the game’s response is at least sensible, even when you’re telling the player
“sorry, you can’t do that”.

The new topics that we’ve encountered here include these:

Object properties

Objects can have a before property – if there is one, the interpreter looks at it
before performing an action which in some way involves that object. Similarly,
you can provide an after property, which the interpreter looks at after performing
an action but before telling the player what’s happened. Both before and after
properties can be used not only with tangible objects like the bird, cottage and
tree (when they intercept actions aimed at that particular object) but also with
rooms (when they intercept actions aimed at any object in that room).

The value of each before and after property is an embedded routine. If such a
routine ends with return false, the interpreter then carries on with the next stage
of the action which has been intercepted; if it ends with return true, the
interpreter does nothing further for that action. By combining these possibilities,
you can supplement the work done by a standard action with statements of your
own, or you can replace a standard action completely.

T
Y
P
E

5 • HEIDI REVISITED

59

Previously, we’ve seen connection properties used with the internal ID of the
room to which they lead. In this chapter, we showed that the value could also be
a string (explaining why movement in that direction isn’t possible). Here are
examples of both, and also of the cant_go property which provides just such an
explanation for all connections that aren’t explicitly listed:

e_to forest,
in_to "It's such a lovely day -- much too nice to go inside.",
cant_go "The only path lies to the east.",

Routines and arguments

The library includes a number of useful routines, available to perform certain
common tasks if you require them; there’s a list in “Library routines” on
page 236. We used the PlayerTo routine, which moves the player character from
her current room to another one – not necessarily adjacent to the first room.

When calling PlayerTo, we had to tell the library which room is the destination.
We did this by supplying that room’s internal ID within parentheses, thus:

PlayerTo(clearing);

A value given in parentheses like that is called an argument of the routine. In
fact, a routine can have more than one argument; if so, they’re separated by
commas. For example, to move the player character to a room without displaying
that room’s description, we could have supplied a second argument:

PlayerTo(clearing,1);

In this example, the effect of the 1 is to prevent the description being displayed.

Statements

We encountered several new statements:

return true;
return false;

We used these at the end of embedded routines to control what the
interpreter did next.

print "string";
print_ret "string";

The print statement simply displays the string of characters represented here
by string. The print_ret statement also does that, then outputs a newline
character, and finally executes a return true;

move obj_id to parent_obj_id;

The move statement rearranges the object tree, by making the first obj_id a
child of the parent_obj_id.

5 • HEIDI REVISITED

60

if (condition && condition) ...

We extended the simple if statement that we met before. The && (to be read
as “and”) is an operator commonly used when testing for more than one
condition at the same time. It means “if this condition is true and this
condition is also true and …” There’s also a || operator, to be read as “or”.

NOTE: in addition, there are & and | operators, but they do a rather different
job and are much less common. Take care not to get them confused.

Actions

We’ve talked a lot about intercepting actions like Listen, Enter, Climb and Drop. An
action is a generalised representation of something to be done, determined by
the verb which the player types. For example, the verbs HEAR and LISTEN are
ways of saying much the same thing, and so both result in the same action: Listen.
Similarly, verbs like ENTER, GET INTO, SIT ON and WALK INSIDE all lead to
an action of Enter, CLIMB and SCALE lead to Climb, and DISCARD, DROP,
PUT DOWN and THROW all lead to Drop. This makes life much easier for the
designer; although Inform defines quite a lot of actions, there are many fewer
than there are ways of expressing those same actions using English verbs.

Each action is represented internally by a number, and the value of the current
action is stored in a library variable called, erm, action. Two more variables are
also useful here: noun holds the internal ID of the object which is the focus of the
action, and second holds the internal ID of the secondary object (if there is one).
Here are some examples of these:

The value nothing is a built-in constant (like true and false) which means, well,
there isn’t any object to refer to. There’s a list of standard library actions in
“Group 1 actions” on page 242, “Group 2 actions” on page 243 and “Group 3
actions” on page 243.

We’ve now reached the end of our first game. In these three chapters we’ve
shown you the basic principles on which almost all games are based, and
introduced you to many of the components that you’ll need when creating more
interesting IF. We suggest that you take one last look at the source code (see
“Heidi” story on page 189), and then move on to the next stage.

Player types action noun second

LISTEN Listen nothing nothing
LISTEN TO THE BIRD Listen bird nothing
PICK UP THE BIRD Take bird nothing
PUT BIRD IN NEST Insert bird nest
DROP THE NEST Drop nest nothing
PUT NEST ON BRANCH PutOn nest branch

6 • WILLIAM TELL: A TALE IS BORN

61

6 • William Tell: a tale is born

K was King William, once governed the land;
L was a lady, who had a white hand.

eeping up the momentum, this chapter (and the three which follow)
works steadily through the design of the “William Tell” game that
we encountered right at the start of this guide. Many of the
principles are the same as the ones we explained when designing

Heidi and her forest, so we’ll not linger on what should be familiar ground.
“William Tell” is a slightly longer and more complex game, so we’ll move as
swiftly as possible to examine the features which are new.

Initial setup

Our starting point is much the same as last time. Here’s a basic Tell.inf:

!==
Constant Story "William Tell";
Constant Headline

"^A simple Inform example
 ^by Roger Firth and Sonja Kesserich.^";

Release 2; Serial "020827"; ! for keeping track of public releases

Constant MAX_SCORE = 4;

Include "Parser";
Include "VerbLib";

!==
! Object classes

!==
! The game objects

!==
! The player's possessions

!==
! Entry point routines

[Initialise;
location = street;
lookmode = 2; ! like the VERBOSE command
move bow to player;
move quiver to player; give quiver worn;
player.description =

"You wear the traditional clothing of a Swiss mountaineer.";
print_ret "^^

The place: Altdorf, in the Swiss canton of Uri. The year is 1307,
at which time Switzerland is under rule by the Emperor Albert of
Habsburg. His local governor -- the vogt -- is the bullying
Hermann Gessler, who has placed his hat atop a wooden pole in

T
Y
P
E

6 • WILLIAM TELL: A TALE IS BORN

62

the centre of the town square; everybody who passes through the
square must bow to this hated symbol of imperial might.
^^
You have come from your cottage high in the mountains,
accompanied by your younger son, to purchase provisions. You are
a proud and independent man, a hunter and guide, renowned both
for your skill as an archer and, perhaps unwisely (for his soldiers
are everywhere), for failing to hide your dislike of the vogt.
^^
It's market-day: the town is packed with people from the
surrounding villages and settlements.^";

];

!==
! Standard and extended grammar

Include "Grammar";

!==

You’ll see that we’ve marked a couple of extra divisions in the file, to help
organise the stuff we’ll add later, but the overall structure is identical to our first
game. Let’s quickly point out some extra bits and pieces:

• If you look at a game’s banner, you’ll see two pieces of information:
“Release” and “Serial number”.

William Tell
A simple Inform example
by Roger Firth and Sonja Kesserich.
Release 2 / Serial number 020827 / Inform v6.21 Library 6/10 SD

These two fields are automatically written by the compiler, which sets by
default Release to 1 and the Serial Number to today’s date. However, we can
explicitly override this behaviour using Release and Serial, to keep track of
different versions of our game. Typically, we will publish several updates of
our games over time, each version fixing problems which were found in the
previous release. If somebody else reports a problem with a game, we’d like
to know exactly which version they were using; so, rather than take the
default values, we set our own. When it’s time to release a new version, all
we have to do is comment out the previous lines and add another below
them:

!Release 1; Serial "020128"; ! First beta-test release
!Release 2; Serial "020217"; ! Second beta-test release
Release 3; Serial "020315"; ! IF Library competition entry

• We’ll be implementing a simple system of awarding points when the player
gets something right, so we define top marks:

Constant MAX_SCORE = 4;

• The Initialise routine that we wrote last time contained only one statement,
to set the player’s initial location. We do that here as well, but we also do
some other stuff.

6 • WILLIAM TELL: A TALE IS BORN

63

• The first thing is to assign 2 to the library variable lookmode. Inform’s default
mode for displaying room descriptions is BRIEF (a description is displayed
only when a room is visited for the first time) and, by changing this variable’s
value, we set it to VERBOSE (descriptions are displayed on every visit). Doing
this is largely a matter of personal preference, and in any case it’s nothing
more than a convenience; it just saves having to remember to type
VERBOSE each time that we test the game.

• At the start of the game, we want Wilhelm to be equipped with his bow and
quiver of arrows. The recommended way of making this happen is to
perform the necessary object tree rearrangement with a couple of move
statements in the Initialise routine:

move bow to player;
move quiver to player;

and indeed this is the clearest way to place objects in the player’s inventory
at the beginning of any game.

NOTE: wait! you say. In the previous chapter, to make an object the child
of another object all we needed to do was to define the child object with
the internal identification of the parent object at the end of the header:

Object bird "baby bird" forest

Why not do that with the player? Because the object which represents the
player is defined by the library (rather than as part of our game), and
actually has an internal ID of selfobj; player is a variable whose value is
that identifier. Rather than worry all about this, it’s easier to use the move
statements.

There’s one other task associated with the quiver; it’s an article of clothing
which Wilhelm is “wearing”, a state denoted by the attribute worn. Normally
the interpreter would apply this automatically, while handling a command
like WEAR QUIVER, but since we’ve moved the quiver ourselves, we also
need to set the quiver’s worn attribute. The give statement does the job:

give quiver worn;

(To clear the attribute, by the way, you’d use the statement give quiver ~worn
– read that as “give the quiver not-worn”; Inform often uses ~ to mean “not”.)

• If the player types EXAMINE ME, the interpreter displays the description
property of the player object. The default value is “As good-looking as ever”,
a bit of a cliché in the world of Inform games. It’s easy to change, though,
once you realise that, since the properties of an object are variables, you can
assign new values to them just as you’d assign new values to location and
lookmode. The only problem is getting the syntax right; you can’t say just:

description = "You wear the traditional clothing of a Swiss mountaineer.";

6 • WILLIAM TELL: A TALE IS BORN

64

because there are dozens of objects in the game, each with its own description
property; you need to be a little more explicit. Here’s what to type:

player.description =
"You wear the traditional clothing of a Swiss mountaineer.";

• Finally, the Initialise routine ends with a lengthy print_ret statement. Since
the interpreter calls Initialise right at the start of the game, that’s the point
at which this material is displayed, so that it acts as a scene-setting preamble
before the game gets under way. In fact, everything you want set or done at
the very beginning of the game, should go into the Initialise routine.

The game won’t compile in this state, because it contains references to objects
which we haven’t yet defined. In any case, we don’t intend to build up the game
in layers as we did last time, but rather to talk about it in logically related chunks.
To see (and if you wish, to type) the complete source, go to “William Tell” story
on page 195.

Object classes

Remember how we defined the rooms in “Heidi”? Our first attempt started like
this:

Object "In front of a cottage"
with description

"You stand outside a cottage. The forest stretches east.",
has light;

Object "Deep in the forest"
with description

"Through the dense foliage, you glimpse a building to the west.
 A track heads to the northeast.",

has light;
...

and we explained that just about every room needs that light attribute, or else the
player would be literally in the dark. It’s a bit of a nuisance having to specify that
same attribute each time; what would be neater would be to say that all rooms
are illuminated. So we can write this:

Class Room
has light;

Room "In front of a cottage"
with description

"You stand outside a cottage. The forest stretches east.",
has ;

Room "Deep in the forest"
with description

"Through the dense foliage, you glimpse a building to the west.
 A track heads to the northeast.",

has ;
...

6 • WILLIAM TELL: A TALE IS BORN

65

We’ve done four things:

1. We’ve said that some of the objects in our game are going to be defined by
the specialised word Room rather than the general-purpose word Object. In
effect, we’ve taught Inform a new word specially for defining objects, which
we can now use as though it had been part of the language all along.

2. We’ve furthermore said that every object which we define using Room is
automatically going to have the light attribute.

3. We’ve changed the way in which we define the four room objects, by starting
them with our specialised word Room. The remainder of the definition for
these objects – the header information, the block of properties, the block of
attributes and the final semicolon – remains the same; except that:

4. We don’t need to explicitly include the light attribute each time; every Room
object has it automatically.

A class is a family of closely related objects, all of which behave in the same way.
Any properties defined for the class, and any attributes defined for the class, are
automatically given to objects which you specify as belonging to that class; this
process of acquisition just by being a member of a class is called inheritance. In
our example, we’ve defined a Room class with a light attribute, and then we’ve
specified four objects each of which is a member of that class, and each of which
gets given a light attribute as a result of that membership.

Why have we gone to this trouble? Three main reasons:

• By moving the common bits of the definitions from the individual objects to
the class definition which they share, those object definitions become shorter
and simpler. Even if we had a hundred rooms, we’d still need to specify
has light only once.

• By creating a specialised word to identify our class of objects, we make our
source file easier to read. Rather than absolutely everything being an
anonymous Object, we can now immediately recognise that some are Room
objects (and others belong to the different classes that we’ll create soon).

• By collecting the common definitions into one place, we make it much easier
to make widespread modifications in future. If we need to make some change
to the definition of all our rooms, we just modify the Room class, and all of the
class members inherit the change.

For these reasons, the use of classes is an incredibly powerful technique, easier
than it may look, and very well worth mastering. From now on, we’ll be defining
object classes whenever it makes sense (which is generally when two or more
objects are meant to behave in exactly the same way).

You may be wondering: suppose I want to define a room which for some reason
doesn’t have light; can I still use the Room class? Sure you can:

6 • WILLIAM TELL: A TALE IS BORN

66

Room cellar "Gloomy cellar"
with description "Your torch shows only cobwebby brick walls.",
has ~light;

This illustrates another nice feature of inheritance: the object definition can
override the class definition. The class says has light, but the object itself says
has ~light (read that as “has no light”) and the object wins. The cellar is dark, and
the player will need a torch to see what’s in it.

In fact, for any object both the block of properties and the block of attributes are
optional and can be omitted if there’s nothing to be specified. Now that the light
attribute is being provided automatically and there aren’t any other attributes to
set, the word has can be left out. Here’s the class again:

Class Room
has light;

and here is how we could have used it in “Heidi”:

Room "In front of a cottage"
with description

"You stand outside a cottage. The forest stretches east.";

Room "Deep in the forest"
with description

"Through the dense foliage, you glimpse a building to the west.
 A track heads to the northeast.";

...

You’ll notice that, if an object has no block of attributes, the semicolon which
terminates its definition simply moves to the end of its last property.

A class for props

We use the Room class in “William Tell”, and a few other classes besides. Here’s a
Prop class (that’s “Prop” in the sense of a theatrical property rather than a
supportive device), useful for scenic items whose only role is to sit waiting in the
background on the off-chance that the player might think to EXAMINE them:

Class Prop
with before [;

Examine: return false;
default:

print_ret "You don't need to worry about ", (the) self, ".";
],

has scenery;

You’ll see that all objects of this class inherit the scenery attribute, which means
they’re excluded from room descriptions. Of greater interest, there’s a before
property; one that’s more complex than our previous efforts. You’ll remember
that the first before we met looked like this:

before [; Listen:
print "It sounds scared and in need of assistance.^";
return true;

],

T
Y
P
E

T
Y
P
E

6 • WILLIAM TELL: A TALE IS BORN

67

The role of that original before was to intercept Listen actions, while leaving all
others well alone. The role of the before in the Prop class is broader: to intercept
(a) Examine actions, and (b) all the rest. If the action is Examine, then the return false
statement means that the action carries on. If the action is default – none of those
explicitly listed, which in this instance means every action apart from Examine –
then the print_ret statement is executed, after which the interpreter does nothing
further. So, a Prop object can be EXAMINEd, but any other action addressed to
it results in a “no need to worry” message.

That message is also more involved than anything we’ve so far displayed. The
statement which produces it is:

print_ret "You don't need to worry about ", (the) self, ".";

which you should read as doing this:

1. display the string “You don’t need to worry about ”,

2. display a definite article (usually “the”) followed by a space and the external
name of the object concerned,

3. display a period, and

4. display a newline and return true in the usual way for a print_ret statement.

The interesting things that this statement demonstrates are:

• The print and print_ret statements aren’t restricted to displaying a single
piece of information: they can display a list of items which are separated by
commas. The statement still ends with a semicolon in the usual way.

• As well as displaying strings, you can also display the names of objects: given
the nest object from our first game, (the) nest would display “the bird's nest”,
(The) nest would display “The bird's nest”, (a) nest would display “a bird's
nest” and (name) nest would display just “bird's nest”. This use of a word in
parentheses, telling the interpreter how to display the following object’s
internal ID, is called a print rule.

• There’s a library variable self which always contains the internal ID of the
current object, and is really convenient when using a Class. By using this
variable in our print_ret statement, we ensure that the message contains the
name of the appropriate object.

Let’s see an example of this in action; here’s a Prop object from “William Tell”:

Prop "south gate" street
with name 'south' 'southern' 'wooden' 'gate',

description "The large wooden gate in the town walls is wide open.",
...

If players type EXAMINE GATE, they’ll see “The large wooden gate...”; if they
type CLOSE GATE then the gate’s before property will step in and display “You

6 • WILLIAM TELL: A TALE IS BORN

68

don’t need to worry about the south gate”, neatly picking up the name of the
object from the self variable.

The reason for doing all this, rather than just creating a simple scenery object like
Heidi’s tree and cottage, is to support EXAMINE for increased realism, while
clearly hinting to players that trying other verbs would be a waste of time.

A class for furniture

The last class for now – we’ll talk about the Arrow and NPC classes in the next
chapter – is for furniture-like objects. If you label an object with the static
attribute, an attempt to TAKE it results in “That’s fixed in place” – acceptable in
the case of Heidi’s branch object (which is indeed supposed to be part of the tree),
less so for items which are simply large and heavy. This Furniture class might
sometimes be more appropriate:

Class Furniture
with before [;

Take,Pull,Push,PushDir:
print_ret (The) self, " is too heavy for that.";

],
has static supporter;

Its structure is similar to that of our Prop class: some appropriate attributes, and a
before property to trap actions directed at it. Again, we display a message which
is “personalised” for the object concerned by using a (The) self print rule. This
time we’re intercepting four actions; we could have written the property like this:

before [;
Take: print_ret (The) self, " is too heavy for that.";
Pull: print_ret (The) self, " is too heavy for that.";
Push: print_ret (The) self, " is too heavy for that.";
PushDir: print_ret (The) self, " is too heavy for that.";

],

but since we’re giving exactly the same response each time, it’s better to put all
of those actions into one list, separated by commas. PushDir, if you were
wondering, is the action triggered by a command like PUSH THE TABLE
NORTH.

Incidentally, another bonus of defining classes like these is that you can probably
reuse them in your next game.

Now that most of our class definitions are in place, we can get on with defining
some real rooms and objects. First, though, if you’re typing in the “William Tell”
game as you read through the guide, you’d probably like to check that what
you’ve entered so far is correct; “Compile-as-you-go” on page 208 explains how
to compile the game in its current – incomplete – state.

T
Y
P
E

7 • WILLIAM TELL: THE EARLY YEARS

69

7 • William Tell: the early years

M was a miser, and hoarded up gold;
N was a nobleman, gallant and bold.

oving along swiftly, we’ll define the first two rooms and populate
them with assorted townspeople and street furniture, we’ll equip
Wilhelm with his trusty bow and quiver of arrows, and we’ll
introduce Helga the friendly stallholder.

Defining the street

This is the street room, the location where the game starts:

Room street "A street in Altdorf"
with description [;

print "The narrow street runs north towards the town square.
Local folk are pouring into the town through the gate to the
south, shouting greetings, offering produce for sale,
exchanging news, enquiring with exaggerated disbelief about
the prices of the goods displayed by merchants whose stalls
make progress even more difficult.^";

if (self hasnt visited)
print "^~Stay close to me, son,~ you say,

~or you'll get lost among all these people.~^";
],
n_to below_square,
s_to

"The crowd, pressing north towards the square,
 makes that impossible.";

We’re using our new Room class, so there’s no need for a light attribute. The n_to
and s_to properties, whose values are an internal ID and a string respectively, are
techniques we’ve used before. The only innovation is that the description
property has an embedded routine as its value.

The first thing in that routine is a print statement, displaying details of the street
surroundings. If that was all that we wanted to do, we could have supplied those
details by making the description value a string; that is, these two examples
behave identically:

description [;
print "The narrow street runs north towards the town square.

Local folk are pouring into the town through the gate to the
south, shouting greetings, offering produce for sale,
exchanging news, enquiring with exaggerated disbelief about
the prices of the goods displayed by merchants whose stalls
make progress even more difficult.^";

],

T
Y
P
E

7 • WILLIAM TELL: THE EARLY YEARS

70

description
"The narrow street runs north towards the town square.
 Local folk are pouring into the town through the gate to the
 south, shouting greetings, offering produce for sale,
 exchanging news, enquiring with exaggerated disbelief about
 the prices of the goods displayed by merchants whose stalls
 make progress even more difficult.",

However, that isn’t all that we want to do. Having presented the basic description,
we’re going to display that little line of dialogue, where Wilhelm tells his son to
be careful. And we want to do that only once, the very first time that the street’s
description is displayed. If the player types LOOK a few times, or moves north
and then returns south to the street, we’re happy to see the surroundings
described – but we don’t want that dialogue again. This is the pair of statements
that makes it happen:

if (self hasnt visited)
print "^~Stay close to me, son,~ you say,

~or you'll get lost among all these people.~^";

The line of dialogue is produced by the print statement, the print statement is
controlled by the if statement, and the if statement is performing the test
self hasnt visited. In detail:

• visited is an attribute, but not one that you’d normally give to an object
yourself. It’s automatically applied to a room object by the interpreter, but
only after that room has been visited for the first time by the player.

• hasnt (and has) are available for testing whether a given attribute is currently
set for a given object. X has Y is true if object X currently has attribute Y, false
if it doesn’t. To make the test in reverse, X hasnt Y is true if object X currently
does not have attribute Y, false if it does.

• self, which we met in the previous chapter, is that useful variable which,
within an object, always refers to that object. Since we’re using it in the
middle of the street object, that’s what it refers to.

So, putting it all together, self hasnt visited is true (and therefore the print
statement is executed) only while the street object has not got a visited attribute.
Because the interpreter automatically gives rooms a visited attribute as soon as
the player has been there once, this test will be true only for one turn. Therefore,
the line of dialogue will be displayed only once: the first time the player visits the
street, at the very start of the game.

Although the primary importance of self is within class definitions, it can also be
convenient to use it simply within an object. Why didn’t we just write this?

if (street hasnt visited)
print "^~Stay close to me, son,~ you say,

~or you'll get lost among all these people.~^";

It’s true that the effect is identical, but there are a couple of good reasons for using
self. One: it’s an aid to understanding your code days or weeks after writing it.

7 • WILLIAM TELL: THE EARLY YEARS

71

If you read the line if (street hasnt visited), you need to think for a moment
about which object is being tested; oh, it’s this one. When you read
if (self hasnt visited), you immediately know which object we’re talking about.

Another reason is auto-plagiarism. Many times you’ll find that a chunk of code
is useful in different situations (say, you want to repeat the mechanics of the street
description in another room). Rather than writing everything from scratch, you’ll
typically use copy-and-paste to repeat the routine, and then all you have to do is
compose the appropriate descriptive strings for the new room. If you’ve used
self, the line if (self hasnt visited) is still good; if you’ve written instead
if (street hasnt visited), you’ll have to change that as well. Worse, if you forget
to change it, the game will still work – but not in the way you’d intended, and the
resulting bug will be quite difficult to track down.

Adding some props

The street’s description mentions various items – the gate, the people, etc. –
which ought to exist within the game (albeit only in minimal form) to sustain the
illusion of hustle and bustle. Our Prop class is ideal for this:

Prop "south gate" street
with name 'south' 'southern' 'wooden' 'gate',

description "The large wooden gate in the town walls is wide open.";

Prop "assorted stalls"
with name 'assorted' 'stalls',

description "Food, clothing, mountain gear; the usual stuff.",
found_in street below_square,

has pluralname;

Prop "merchants"
with name 'merchant' 'merchants' 'trader' 'traders',

description
"A few crooks, but mostly decent traders touting their wares
with raucous overstatement.",

found_in street below_square,
has animate pluralname;

Prop "local people"
with name 'people' 'folk' 'local' 'crowd',

description "Mountain folk, just like yourself.",
found_in [; return true;],

has animate pluralname;

NOTE: because these objects are not referenced by other objects, we haven’t
bothered to given them internal obj_ids (though we could have; it wouldn’t
make any difference). However, we have provided external_names, because
these are used by the Prop class’s print_ret ... (the) self statement.

You’ll see a couple of new attributes: animate marks an object as being “alive”,
while pluralname specifies that its external name is plural rather than singular. The
interpreter uses these attributes to ensure that messages about such objects are
grammatical and appropriate (for example, it will now refer to “some merchants”

T
Y
P
E

7 • WILLIAM TELL: THE EARLY YEARS

72

rather than “a merchants”). Because the library handles so many situations
automatically, it’s hard to be sure exactly what messages players may trigger; the
best approach is to play safe and always give an object the relevant set of
attributes, even when, as here, they probably won’t be needed.

You’ll also see a new found_in property, which specifies the rooms where this
object is to appear. The stalls, for example, can be EXAMINEd both in the street
and below the square, so we could have created a Prop object in each room:

Prop "assorted stalls" street
with name 'assorted' 'stalls',

description "Food, clothing, mountain gear; the usual stuff.",
has pluralname;

Prop "assorted stalls" below_square
with name 'assorted' 'stalls',

description "Food, clothing, mountain gear; the usual stuff.",
has pluralname;

but found_in does the same job more neatly – there’s only one object, but it
appears in both the street and below_square rooms while the player’s there.

The local people are even more ubiquitous. In this case the found_in value is an
embedded routine rather than a list of rooms; such a routine would generally test
the value of the current location and return true if it wants to be present here, or
false if not. Since we’d like the local people always to be present, in every room,
we return true without bothering to examine location. It’s as though we’d written
any of these, but simpler and less error prone:

Prop "local people"
with name 'people' 'folk' 'local' 'crowd',

description "Mountain folk, just like yourself.",
found_in street below_square south_square mid_square north_square

marketplace,
has animate pluralname;

Prop "local people"
with name 'people' 'folk' 'local' 'crowd',

description "Mountain folk, just like yourself.",
found_in [;

if (location == street || location == below_square ||
location == south_square || location == mid_square ||
location == north_square || location == marketplace)
return true;

return false;
],

has animate pluralname;

Prop "local people"
with name 'people' 'folk' 'local' 'crowd',

description "Mountain folk, just like yourself.",
found_in [;

if (location == street or below_square or south_square or
mid_square or north_square or marketplace) return true;

return false;
],

has animate pluralname;

7 • WILLIAM TELL: THE EARLY YEARS

73

In the second example, you’ll see the || operator, to be read as “or”, which we
mentioned near the end of “Heidi”; it combines the various location == some_room
comparisons so that the if statement is true if any of those individual tests is true.
And in the third example we introduce the or keyword, which is a more succinct
way of achieving exactly the same result.

The player’s possessions

Since our Initialise routine has already mentioned them, we might as well define
Wilhelm’s bow and arrows:

Object bow "bow"
with name 'bow',

description "Your trusty yew bow, strung with flax.",
before [;

Drop,Give: print_ret "You're never without your trusty bow.";
],

has clothing;

Object quiver "quiver"
with name 'quiver',

description
"Made of goatskin, it usually hangs over your left shoulder.",

before [;
Drop,Give:

print_ret "But it was a present from Hedwig, your wife.";
],

has container open clothing;

Both of these are straightforward objects, with the Drop and Give actions being
intercepted to ensure that Wilhelm is never without them. The clothing attribute
makes its first appearance, marking both the quiver and the bow as capable of
being worn (as the result of a WEAR BOW command, for instance); you’ll
remember that our Initialise routine goes on to add a worn attribute to the quiver.

An empty quiver is pretty useless, so here’s the class used to define Wilhelm’s
stock of arrows. This class has some unusual features:

Class Arrow
with name 'arrow' 'arrows//p',

article "an",
plural "arrows",
description "Just like all your other arrows -- sharp and true.",
before [;

Drop: print_ret "Much too dangerous to leave lying around.";
];

The classes we’ve created so far – Room, Prop and Furniture – are intended for
objects which behave the same but are otherwise clearly separate. For example,
a table, a bed and a wardrobe would generally have their own individual
characteristics – a name, a description, maybe some specialised properties –
while still inheriting the general behaviour of Furniture objects. The arrows aren’t

T
Y
P
E

T
Y
P
E

7 • WILLIAM TELL: THE EARLY YEARS

74

like this: not only do they behave the same, but also they are indistinguishable
one from another. We’re trying for this effect:

>INVENTORY
You are carrying:

a quiver (being worn)
three arrows

a bow

>

where the interpreter lumps together our stock of three arrows, rather than listing
them individually in this clumsy fashion:

>INVENTORY
You are carrying:

a quiver (being worn)
an arrow
an arrow
an arrow

a bow

>

The interpreter will do this for us if our objects are “indistinguishable”, best
achieved by making them members of a class which includes both name and plural
properties. We define the actual arrows very simply, like this:

Arrow "arrow" quiver;
Arrow "arrow" quiver;
Arrow "arrow" quiver;

and you can see that we provide only two pieces of information for each Arrow
object: an external name in double quotes (“arrow” in each case) which the
interpreter uses when referring to the object, and an initial location (in the
quiver). That’s all: no block of properties, no set of attributes, and no internal
identifier, because we never need to refer to the individual Arrow objects within
the game.

The name property of the class definition has an odd-looking dictionary word:

name 'arrow' 'arrows//p',

The word 'arrow' refers to a single arrow. So also would the word 'arrows', unless
we specifically tell the interpreter that it’s a plural reference. That //p marks
'arrows' as being a potential reference to more than one object at once, thus
enabling players to type TAKE ARROWS and thereby pick up as many arrows
as happened to be available (without it, TAKE ARROWS would have picked up
one at random).

There are two other properties not seen previously:

article "an",
plural "arrows",

T
Y
P
E

7 • WILLIAM TELL: THE EARLY YEARS

75

The article property lets you define the object’s indefinite article – usually
something like “a”, “an” or “some” – instead of letting the library assign one
automatically. It’s a belt-and-braces (OK, belt-and-suspenders) precaution:
because “arrow” starts with a vowel, we need to display “an arrow” not “a arrow”.
Most interpreters automatically get this right, but just to be on the safe side, we
explicitly define the appropriate word. And the plural property defines the word
to be used when lumping several of these objects together, as in the “three
arrows” inventory listing. The interpreter can’t just automatically slap an “s” on
the end; the plural of “slice of cake”, for example, isn’t “slice of cakes”.

Moving further along the street

As Wilhelm moves north towards the square, he comes to this room:

Room below_square "Further along the street"
with description

"People are still pushing and shoving their way from the southern
 gate towards the town square, just a little further north.
 You recognise the owner of a fruit and vegetable stall.",

n_to south_square,
s_to street;

No surprises there, nor in most of the supporting scenery objects.

Furniture stall "fruit and vegetable stall" below_square
with name 'fruit' 'veg' 'vegetable' 'stall' 'table',

description
"It's really only a small table, with a big heap of potatoes,
 some carrots and turnips, and a few apples.",

before [; Search: <<Examine self>>;],
has scenery;

Prop "potatoes" below_square
with name 'potato' 'potatoes' 'spuds',

description
"Must be a particularly early variety... by some 300 years!",

has pluralname;

Prop "fruit and vegetables" below_square
with name 'carrot' 'carrots' 'turnip' 'turnips' 'apples' 'vegetables',

description "Fine locally grown produce.",
has pluralname;

The only new thing here is the before property of the fruit’n’veg stall. The stall’s
description – lots of items on a table – may suggest to players that they can
SEARCH through the produce, maybe finding a lucky beetroot or something else
interesting. No such luck – and we might as well trap the attempt.

Having intercepted a Search action, our plan is to respond with the stall’s
description, as though the player has typed EXAMINE THE STALL. There isn’t
an easy way for us to stealthily slide those literal words into the interpreter, but
we can simulate the effect which they’d cause: an action of Examine applied to the
object stall. This rather cryptic statement does the job:

T
Y
P
E

T
Y
P
E

7 • WILLIAM TELL: THE EARLY YEARS

76

<Examine stall>;

Having diverted the Search action into an Examine action, we must tell the
interpreter that it doesn’t need to do anything else, because we’ve handled the
action ourselves. We’ve done that before – using return true – and so a first stab
at the before action looks like this:

before [; Search: <Examine stall>; return true;],

The two-statement sequence <...>; return true is so common that there’s a single
statement shortcut: <<...>>. Also, for exactly the same reason as before, our code
is clearer if we use self instead of stall. So this is how the property finally stands:

before [; Search: <<Examine self>>;],

A couple of final observations before we leave this topic. The example here is of
an action (Examine) applied to an object (self, though stall or noun would also
work at this point). You can also use the <...> and <<...>> statements for actions
which affect no objects:

<<Look>>;

(representing the command LOOK), or which affect two. For example, the
command PUT THE BIRD IN THE NEST can be simulated with this statement:

<<Insert bird nest>>;

Introducing Helga

One of the trickiest aspects of designing a good game is to provide satisfying
interaction with other characters. It’s hard enough to code inanimate objects
which provoke appropriate responses to whatever actions the player character
(PC) might attempt. That all gets much worse once those “other objects” are
living creatures – non-player characters (NPCs) – with, supposedly, minds of
their own. A good NPC might move around independently, perform actions with
a purpose, initiate conversations, respond to what you say and do (and even to
what you don’t say or do); it can be a real nightmare.

But not here: we’ve kept our three NPCs – Helga, Walter and the vogt – as simple
as possible. Nevertheless, we can establish some fundamental principles; here’s
the class upon which we base our NPCs:

Class NPC
with life [;

Answer,Ask,Order,Tell:
print_ret "Just use T[ALK] [TO ", (the) self, "].";

],
has animate;

The most important thing here is the animate attribute – that’s what defines an
object as an NPC, and causes the interpreter to treat it a little differently – for
example, TAKE HELGA results in “I don’t suppose Helga would care for that”.

T
Y
P
E

7 • WILLIAM TELL: THE EARLY YEARS

77

The animate attribute also brings into play nine extra actions which can be applied
only to animate objects: Answer, Ask, Order and Tell are all associated with speech,
and Attack, Kiss, Show, ThrowAt and WakeOther are associated with non-verbal
interaction. Additionally, a new life property – very similar to before – can be
defined to intercept them. Here we use it to trap speech-related commands such
as ASK HELGA ABOUT APPLE and TELL WALTER ABOUT BABIES, telling
players that in this game we’ve implemented only a simpler TALK verb (which
we describe in “Verbs, verbs, verbs” on page 98).

Based on the NPC class we’ve created, here’s Helga:

NPC stallholder "Helga" below_square
with name 'stallholder' 'greengrocer' 'monger' 'shopkeeper' 'merchant'

'owner' 'Helga' 'dress' 'scarf' 'headscarf',
description

"Helga is a plump, cheerful woman,
 concealed beneath a shapeless dress and a spotted headscarf.",

initial [;
print "Helga pauses from sorting potatoes

to give you a cheery wave.^";
if (location hasnt visited) {

move apple to player;
print "^~Hello, Wilhelm, it's a fine day for trade! Is this

young Walter? My, how he's grown. Here's an apple for him
-- tell him to mind that scabby part, but the rest's good
enough. How's Frau Tell? Give her my best wishes.~^";

}
],
times_spoken_to 0, ! for counting the conversation topics
life [;

Kiss: print_ret "~Ooh, you saucy thing!~";
Talk:

self.times_spoken_to = self.times_spoken_to + 1;
switch (self.times_spoken_to) {

1: score = score + 1;
print_ret "You warmly thank Helga for the apple.";

2: score = score + 1;
print_ret "~See you again soon.~";

default: return false;
}

],
has female proper;

The new attributes are female – because we want the interpreter to refer to Helga
with the appropriate pronouns – and proper. The latter signifies that this object’s
external name is a proper noun, and so references to it should not be preceded
by “a” or “the”: you wouldn’t want to display “You can see a Helga here” or “I
don’t suppose the Helga would care for that”. You may notice the library
variable score being incremented. This variable holds the number of points that
the player has scored; when it changes like this, the interpreter tells the player
that “Your score has just gone up by one point”.

There are also life and times_spoken_to properties (which we’ll talk about in
“William Tell: the end is nigh” on page 91) and an initial property.

T
Y
P
E

7 • WILLIAM TELL: THE EARLY YEARS

78

initial is used when the interpreter is describing a room and listing the objects
you can see there. If we didn’t define it, you’d get this:

Further along the street
People are still pushing and shoving their way from the southern gate towards
the town square, just a little further north. You recognise the owner of a fruit
and vegetable stall.

You can see Helga here.

>

but we want to introduce Helga in a more interactive manner, and that’s what the
initial property is for: it replaces the standard “You can see object here” with a
tailored message of your own design. The value of an initial property can be
either a string which is to be displayed or, as here, an embedded routine. This
one is pretty similar to the description property that we defined for the street:
something that’s always printed (Helga pauses...) and something that’s printed
only on the first occasion ("Hello, Wilhelm, it’s a fine day... "):

Further along the street
People are still pushing and shoving their way from the southern gate towards
the town square, just a little further north. You recognise the owner of a fruit
and vegetable stall.

Helga pauses from sorting potatoes to give you a cheery wave.

"Hello, Wilhelm, it's a fine day for trade! Is this young Walter? My, how he's
grown. Here's an apple for him -- tell him to mind that scabby part, but the
rest's good enough. How's Frau Tell? Give her my best wishes."

>

But it’s not quite the same as the street’s description routine. First, we need a
slightly different if test: self hasnt visited works fine for a room object, but this
routine is part of an object in a room; instead we could use either
below_square hasnt visited or (better) location hasnt visited – since location is the
library variable that refers to the room where the player currently is. And second,
some curly braces {...} have appeared: why?

On Wilhelm’s first visit to this room, we need to do two things:

• ensure that Wilhelm is in possession of an apple, because that’s mentioned
when we...

• display Helga’s cheery greeting.

The move statement does the first of those, and the print statement does the
second. And both statements need to be controlled by the if statement.

7 • WILLIAM TELL: THE EARLY YEARS

79

So far, we’ve used an if statement twice, in both cases to control a single
following statement.

if (nest in branch) deadflag = 2;

if (self hasnt visited)
print "^~Stay close to me, son,~ you say,

~or you'll get lost among all these people.~^";

That’s what an if does – it controls whether the following statement is executed
or not. So how can we control two statements at once? Well, we could write two
if statements:

if (location hasnt visited)
move apple to player;

if (location hasnt visited)
print "^~Hello, Wilhelm, it's a fine day for trade! Is this

young Walter? My, how he's grown. Here's an apple for him
-- tell him to mind that scabby part, but the rest's good
enough. How's Frau Tell? Give her my best wishes.~^";

but that’s unbearably clumsy; instead, we use the braces to group the move and
print statement into a statement block (sometimes known as a code block)
which counts as a single statement for the purposes of control by the if statement.

if (location hasnt visited) {
move apple to player;
print "^~Hello, Wilhelm, it's a fine day for trade! Is this

young Walter? My, how he's grown. Here's an apple for him
-- tell him to mind that scabby part, but the rest's good
enough. How's Frau Tell? Give her my best wishes.~^";

}

A statement block can contain one, two, ten, a hundred statements; it doesn’t
matter – they’re all treated as one unit by if (and by objectloop, which we meet
later, and by do, for and while, all of them loop statements that we don’t encounter
in this guide).

NOTE: the exact positioning of the braces is a matter of personal choice. We
use this style:

if (condition) {
statement;
statement;
...

}

but other designers have their own preferences, including:

if (condition) {
statement;
statement;
...
}

7 • WILLIAM TELL: THE EARLY YEARS

80

if (condition)
{ statement;

statement;
...

}

if (condition)
{
statement;
statement;
...
}

Although we’ve not yet needed to use it, now would probably be a good time to
mention the else extension to the if statement. Sometimes we want to execute
one statement block if a certain condition is true, and a different statement block
if it’s not true. Again, we could write two if statements:

if (location has visited) {
statement;
statement;
...

}
if (location hasnt visited) {

statement;
statement;
...

};

but that’s hardly an elegant approach; an else clause does the job more neatly:

if (location has visited) {
statement;
statement;
...

}
else {

statement;
statement;
...

};

We’ve done a lot of scene-setting, but the real action is still to come. Next, it’s
time to define the town square, and create a confrontation between Wilhelm and
the vogt’s soldiers. (But first, see again “Compile-as-you-go” on page 208 if you’re
typing in the game as you read through the guide.)

8 • WILLIAM TELL: IN HIS PRIME

81

8 • William Tell: in his prime

O was an oyster girl, and went about town;
P was a parson, and wore a black gown.

ur game’s action nears its climax in the town’s central square. In this
chapter we define the square’s constituent rooms and deal with
Wilhelm’s approach to the hat on the pole – does he salute it, or does
he remain proudly defiant?

The south side of the square

The town square, notionally one enormous open space, is represented by three
rooms. Here’s the south side:

Room south_square "South side of the square"
with description

"The narrow street to the south has opened onto the town square,
 and resumes at the far side of this cobbled meeting place.
 To continue along the street towards your destination --
 Johansson's tannery -- you must walk north across the square,
 in the middle of which you see Gessler's hat set on that
 loathsome pole. If you go on, there's no way you can avoid
 passing it. Imperial soldiers jostle rudely through the throng,
 pushing, kicking and swearing loudly.",

n_to mid_square,
s_to below_square;

Prop "pole"
with name 'wooden' 'pole',

description "You're too far away to see any detail.",
found_in south_square north_square;

Prop "hat"
with name 'hat',

description "You're too far away to see any detail.",
found_in south_square north_square;

Prop "Gessler's soldiers"
with name 'soldier' 'soldiers',

description "They're uncouth, violent men, not from around here.",
before [;

FireAt: print_ret "You're outnumbered many times.";
Talk: print_ret "Such scum are beneath your contempt.";

],
found_in south_square mid_square north_square marketplace,

has animate pluralname proper;

It’s all pretty standard stuff: just a Room and three Props. The “real” pole object is
located in the mid_square room, which means that players can’t EXAMINE it from
this room (technically, it’s “not in scope”). However, since we’re pretending that
Wilhelm can see the whole of the square from where he’s standing, we need to

T
Y
P
E

8 • WILLIAM TELL: IN HIS PRIME

82

provide dummy pole and hat objects, found_in both this room and the north side
of the square, even if they’re “too far away” for a detailed description.

The obnoxious soldiers are also implemented very sketchily; they need to be
there, but they don’t do much. Their most interesting characteristic is probably
that they trap two actions – FireAt and Talk – which are not part of the library, but
instead new actions that we’ve defined specially for this game. We’ll talk about
those actions in “Verbs, verbs, verbs” on page 98, at which time the role of this
before property will make more sense.

The middle of the square

The activities here are pivotal to the game’s plot. Wilhelm has arrived from the
south side of the square, and now encounters the pole with the hat on top. He can
do three things:

1. Return south. That’s allowed, but all it does is waste a little time – there’s
nothing else to usefully do south of here.

2. Salute the pole, and then proceed to the north. That’s allowed, though it
rather subverts the folk story.

3. Attempt to proceed northwards without saluting the pole. Twice, a soldier
will prevent this, and issue a verbal warning. On the third attempt, patience
runs out, and Wilhelm is hauled off to perform his party piece.

So, there are two actions that we need to look out for: Salute (trapped by the
pole), and Go (which can be trapped by the room itself). Go is a standard library
action. Salute is one that we’ve devised; let’s deal with it first. Here’s a first cut of
the room:

Room mid_square "Middle of the square"
with description

"There is less of a crush in the middle of the square; most
 people prefer to keep as far away as possible from the pole
 which towers here, topped with that absurd ceremonial hat. A
 group of soldiers stands nearby, watching everyone who passes.",

n_to north_square,
s_to south_square;

and the pole:

8 • WILLIAM TELL: IN HIS PRIME

83

Furniture pole "wooden pole" mid_square
with name 'wooden' 'pole' 'pine' 'hat' 'black' 'red' 'brim' 'feathers',

description
"The pole, the trunk of a small pine some few inches in diameter,
 stands about nine or ten feet high. Set carefully on top is
 Gessler's ludicrous black and red leather hat, with a widely
 curving brim and a cluster of dyed goose feathers.",

has_been_saluted false,
before [;

Salute:
self.has_been_saluted = true;
print_ret "You salute the hat on the pole. ^^

~Why, thank you, sir,~ sneers the soldier.";
],

has scenery;

The room will need some more work in a minute, but the pole object is complete
(note that we’ve simplified matters slightly by making one object represent both
the pole and the hat which it supports). It mentions a property which we’ve not
met before: has_been_saluted. What a remarkable coincidence: the library
provides a property with a name that’s exactly right for our game; surely not?

No, of course not. has_been_saluted isn’t a standard library property; it’s one that
we’ve just invented. Notice how easily we did it – we simply included the line:

has_been_saluted false,

in the object definition and voilà, we’ve added our own home-made property,
and initialised it to false. To switch the state of the property, we can simply write:

pole.has_been_saluted = true;
...
pole.has_been_saluted = false;

or just (within the pole object):

self.has_been_saluted = true;
...
self.has_been_saluted = false;

We could also test, if necessary, how the property currently fares:

if (pole.has_been_saluted == true) ...

Notice that we use == (that’s two equals signs) to test for “is equal to”; don’t
confuse this usage with = (a single equals sign) which assigns a value to a variable.
Compare these examples:

Correct Incorrect
score = 10;

assigns the value 10 to score.
score == 10;

does nothing; score is unchanged.
if (score == 10) ...

executes the next statement
only if the value of score
is 10.

if (score = 10) ...

assigns 10 to score, then always executes the next
statement – because score = 10 evaluates to 10,
which is treated as true, so the test is always true.

T
Y
P
E

8 • WILLIAM TELL: IN HIS PRIME

84

Defining a new property variable which, instead of applying to every object in
the game (as do the standard library properties), is specific only to a class of
objects or even – as here – to a single object, is a common and powerful
technique. In this game, we need a true/false variable to show whether Wilhelm
has saluted the pole or not: the clearest way is to create one as part of the pole.
So, when the pole object traps the Salute action, we do two things: use a
self.has_been_saluted = true statement to record the fact, and then use a print_ret
statement to tell players that the salute was “gratefully” received.

NOTE: creating new property variables like this – at the drop of a hat, as it
were – is the recommended approach, but it isn’t the only possibility. We
briefly mention some alternative approaches in “Reading other people’s
code” on page 159.

Back to the mid_square room. We’ve said that we need to detect Wilhelm trying
to leave this room, which we can do by trapping the Go action in a before property.
Let’s sketch the coding we’ll need:

before [; Go:
if (noun == s_obj) { Wilhelm is trying to move south }
if (noun == n_obj) { Wilhelm is trying to move north }

];

We can easily trap the Go action, but which direction is he moving? Well, it turns
out that the interpreter turns a command of GO SOUTH (or just SOUTH) into an
action of Go applied to an object s_obj. This object is defined by the library; so
why isn’t it called just “south”? Well, because we already have another kind of
south, the property s_to used to say what lies in a southerly direction when
defining a room. To avoid confusing them, s_to means “south to” and s_obj
means “south when the player types it as the object of a verb”.

The identity of the object which is the target of the current action is stored in the
noun variable, so we can write the statement if (noun == s_obj) to test whether the
contents of the noun variable are equal to the ID of the s_obj object – and, if so,
Wilhelm is trying to move south. Another similar statement tests whether he’s
trying to move north, and that’s all that we’re interested in; we can let other
movements take care of themselves.

The words Wilhelm is trying to move south aren’t part of our game; they’re just a
temporary reminder that, if we need to execute any statements in this situation,
here’s the place to put them. Actually, that’s the simpler case; it’s when Wilhelm
is trying to move north that the fun starts. We need to behave in one of two ways,
depending on whether or not he’s saluted the pole. But we know when he’s done
that; the pole’s has_been_saluted property tells us. So we can expand our sketch
like this:

8 • WILLIAM TELL: IN HIS PRIME

85

before [; Go:
if (noun == s_obj) { Wilhelm is trying to move south [1] }
if (noun == n_obj) { Wilhelm is trying to move north...

if (pole.has_been_saluted == true)
{ ...and he’s saluted the pole [2] }

else { ...but he hasn’t saluted the pole [3] }
}

];

Here we have one if statement nested inside another. And there’s more: the
inner if has an else clause, meaning that we can execute one statement block
when the test if (pole.has_been_saluted == true) is true, and an alternative block
when the test isn’t true. Read that again carefully, checking how the braces {...}
pair up; it’s quite complex, and you need to understand what’s going on. One
important point to remember is that, unless you insert braces to change this, an
else clause always pairs with the most recent if. Compare these two examples:

if (condition1) {
if (condition2) { here when condition1 is true and condition2 is true }
else { here when condition1 is true and condition2 is false }

}

if (condition1) {
if (condition2) { here when condition1 is true and condition2 is true }

}
else { here when condition1 is false }

In the first example, the else pairs with the most recent if (condition2), whereas
in the second example the revised positioning of the braces causes the else to pair
with the earlier if (condition1).

NOTE: we’ve used indentation as a visual guide to how the if and else are
related. Be careful, though; the compiler matches an else to its if purely on
the basis of logical grouping, regardless of how you’ve laid out the code.

Back to the before property. You should be able to see that the cases marked [1],
[2] and [3] correspond to the three possible courses of action we listed at the start
of this section. Let’s write the code for those, one at a time.

Case 1: Returning south

First, Wilhelm is trying to move south; not very much to this:

warnings_count 0, ! for counting the soldier's warnings
before [; Go:

if (noun == s_obj) {
self.warnings_count = 0;
pole.has_been_saluted = false;

}
if (noun == n_obj) {

if (pole.has_been_saluted == true)
 { moving north...and he’s saluted the pole }

else { moving north...but he hasn’t saluted the pole }
}

];

8 • WILLIAM TELL: IN HIS PRIME

86

Wilhelm might wander into the middle of the square, take one look at the pole
and promptly return south. Or, he might make one or two (but not three)
attempts to move north first, and then head south. Or, he might be really
perverse, salute the pole and only then head south. In all of these cases, we take
him back to square one, as though he’d received no soldier’s warnings
(irrespective of how many he’d actually had) and as though the pole had not been
saluted (irrespective of whether it was or not). In effect, we’re pretending that the
soldier has such a short memory, he’ll completely forget Wilhelm if our hero
should move away from the pole.

To do all this, we’ve added a new property and two statements. The property is
warnings_count, and its value will count how many times Wilhelm has tried to go
north without saluting the pole: 0 initially, 1 after his first warning, 2 after his
second warning, 3 when the soldier’s patience finally runs out. The property
warnings_count isn’t a standard library property; like the pole’s has_been_saluted
property, it’s one that we’ve created to meet a specific need.

Our first statement is self.warnings_count = 0, which resets the value of the
warnings_count property of the current object – the mid_square room – to 0. The
second statement is pole.has_been_saluted = false, which signifies that the pole
has not be saluted. That’s it: the soldier’s memory is erased, and Wilhelm’s
actions are forgotten.

Case 2: Moving north after saluting

Wilhelm is moving north...and he’s saluted the pole; another easy one:

warnings_count 0, ! for counting the soldier's warnings
before [; Go:

if (noun == s_obj) {
self.warnings_count = 0;
pole.has_been_saluted = false;

}
if (noun == n_obj) {

if (pole.has_been_saluted == true) {
print "^~Be sure to have a nice day.~^";
return false;

}
else { moving north...but he hasn’t saluted the pole }

}
];

All that we need do is print a sarcastic goodbye from the soldier, and then
return false. You’ll remember that doing so tells the interpreter to continue
handling the action, which in this case is an attempt to move north. Since this is
a permitted connection, Wilhelm thus ends up in the north_square room, defined
shortly.

8 • WILLIAM TELL: IN HIS PRIME

87

Case 3: Moving north before saluting

So that just leaves the final case: moving north...but he hasn’t saluted the pole.
This one has more to it than the others, because we need the “three strikes and
you’re out” coding. Let’s sketch a little more:

warnings_count 0, ! for counting the soldier's warnings
before [; Go:

if (noun == s_obj) {
self.warnings_count = 0;
pole.has_been_saluted = false;

}
if (noun == n_obj) {

if (pole.has_been_saluted == true) {
print "^~Be sure to have a nice day.~^";
return false;

}
else {

self.warnings_count = self.warnings_count + 1;
switch (self.warnings_count) {

1: First attempt at moving north
2: Second attempt at moving north
default: Final attempt at moving north

}
}

}
];

First of all, we need to count how many times he’s tried to move north.
self.warnings_count is the variable containing his current tally, so we add 1 to
whatever value it contains: self.warnings_count = self.warnings_count + 1. Then,
determined by the value of the variable, we must decide what action to take: first
attempt, second attempt, or final confrontation. We could have used three
separate if statements:

if (self.warnings_count == 1) { First attempt at moving north }
if (self.warnings_count == 2) { Second attempt at moving north }
if (self.warnings_count == 3) { Final attempt at moving north }

or a couple of nested if statements:

if (self.warnings_count == 1) { First attempt at moving north }
else {

if (self.warnings_count == 2) { Second attempt at moving north }
else { Final attempt at moving north }

}

but for a series of tests all involving the same variable, a switch statement is
usually a clearer way of achieving the same effect. The generic syntax for a switch
statement is:

switch (expression) {
value1: whatever happens when the expression evaluates to value1
value2: whatever happens when the expression evaluates to value2
...
valueN: whatever happens when the expression evaluates to valueN
default: whatever happens when the expression evaluates to something else

}

8 • WILLIAM TELL: IN HIS PRIME

88

This means that, according to the current value of an expression, we can get
different outcomes. Remember that the expression may be a Global or local
variable, an object’s property, one of the variables defined in the library, or any
other expression capable of having more than one value. You could write
switch (x) if x is a defined variable, or even, for instance, switch (x+y) if both x
and y are defined variables. Those whatever happens when... are collections of
statements which implement the desired effect for a particular value of the
switched variable.

Although a switch statement switch (expression) { ... } needs that one pair of
braces, it doesn’t need braces around each of the individual “cases”, no matter
how many statements each of them includes. As it happens, case 1 and case 2
contain only a single print_ret statement each, so we’ll move swiftly past them to
the third, more interesting, case – when self.warnings_count is 3. Again, we could
have written this:

switch (self.warnings_count) {
1: First attempt at moving north
2: Second attempt at moving north
3: Final attempt at moving north

}

but using the word default – meaning “any value not already catered for” – is
better design practice; it’s less likely to produce misleading results if for some
unforeseen reason the value of self.warnings_count isn’t the 1, 2 or 3 you’d
anticipated. Here’s the remainder of the code (with some of the printed text
omitted):

self.warnings_count = self.warnings_count + 1;
switch (self.warnings_count) {

1: print_ret "...";
2: print_ret "...";
default:

print "^~OK, ";
style underline; print "Herr"; style roman;
print " Tell, now you're in real trouble. I asked you

...
old lime tree growing in the marketplace.^";

move apple to son;
PlayerTo(marketplace);
return true;

} ;

The first part is really just displaying a lot of text, made slightly messier because
we’re adding emphasis to the word “Herr” by using underlining (which actually
comes out as italic type on most interpreters). Then, we make sure that Walter has
the apple (just in case we didn’t give it to him earlier in the game), relocate to the
final room using PlayerTo(marketplace), and finally return true to tell the
interpreter that we’ve handled this part of the Go action ourselves.

And so, at long last, here’s the complete code for the mid_square, the most
complicated object in the whole game:

8 • WILLIAM TELL: IN HIS PRIME

89

Room mid_square "Middle of the square"
with description

"There is less of a crush in the middle of the square; most
 people prefer to keep as far away as possible from the pole
 which towers here, topped with that absurd ceremonial hat. A
 group of soldiers stands nearby, watching everyone who passes.",

n_to north_square,
s_to south_square,
warnings_count 0, ! for counting the soldier's warnings
before [; Go:

if (noun == s_obj) {
self.warnings_count = 0;
pole.has_been_saluted = false;

}
if (noun == n_obj) {

if (pole.has_been_saluted == true) {
print "^~Be sure to have a nice day.~^";
return false;

} ! end of (pole has_been_saluted)
else {

self.warnings_count = self.warnings_count + 1;
switch (self.warnings_count) {
1: print_ret "A soldier bars your way. ^^

~Oi, you, lofty; forgot yer manners, didn't you?
How's about a nice salute for the vogt's hat?~";

2: print_ret "^~I know you, Tell, yer a troublemaker,
ain't you? Well, we don't want no bovver here,
so just be a good boy and salute the friggin'
hat. Do it now: I ain't gonna ask you again...~";

default:
print "^~OK, ";
style underline; print "Herr"; style roman;
print " Tell, now you're in real trouble. I asked you

nice, but you was too proud and too stupid. I
think it's time that the vogt had a little word
with you.~
^^
And with that the soldiers seize you and Walter
and, while the sergeant hurries off to fetch
Gessler, the rest drag you roughly towards the
old lime tree growing in the marketplace.^";

move apple to son;
PlayerTo(marketplace);
return true;

} ! end of switch
} ! end of (pole has_NOT_been_saluted)

} ! end of (noun == n_obj)
];

The north side of the square

The only way to get here is by saluting the pole and then moving north; not very
likely, but good game design is about predicting the unpredictable.

T
Y
P
E

8 • WILLIAM TELL: IN HIS PRIME

90

Room north_square "North side of the square"
with description

"A narrow street leads north from the cobbled square. In its
 centre, a little way south, you catch a last glimpse of the pole
 and hat.",

n_to [;
deadflag = 3;
print_ret "With Walter at your side, you leave the square by the

north street, heading for Johansson's tannery.";
],
s_to "You hardly feel like going through all that again.";

There’s one new feature in this room: the value of the n_to property is a routine,
which the interpreter runs when Wilhelm tries to exit the square northwards. All
that the routine does is set the value of the library variable deadflag to 3, print a
confirmation message, and return true, thus ending the action.

At this point, the interpreter notices that deadflag is no longer zero, and
terminates the game. In fact, the interpreter checks deadflag at the end of every
turn; these are the values that it’s expecting to find:

• 0 – this is the normal state; the game continues.

• 1 – the game is over. The interpreter displays “You have died”.

• 2 – the game is over. The interpreter displays “You have won”.

• any other value – the game is over, but there aren’t any appropriate messages
built into the library. Instead, the interpreter looks for an entry point routine
called DeathMessage – which we must provide – where we can define our own
tailored “end messages”.

In this game, we never set deadflag to 1, but we do use values of 2 and 3. So we’d
better define a DeathMessage routine to tell players what they’ve done:

[DeathMessage; print "You have screwed up a favourite folk story";];

Our game has only one customised ending, so the simple DeathMessage routine
we’ve written is sufficient for our purposes. Were you to conceive multiple
endings for a game, you could specify suitable messages by checking for the
current value of the deadflag variable:

[DeathMessage;
if (deadflag == 3) print "You leave Scarlett O'Hara for good";
if (deadflag == 4) print "You crush Scarlett with a passionate embrace";
if (deadflag == 5) print "You've managed to divorce Scarlett";
...

];

Of course, you must assign the appropriate value to deadflag at the point when
the game arrives at each of those possible endings.

We’ve nearly finished. In the concluding chapter of this game, we’ll talk about
the fateful shooting of the arrow.

T
Y
P
E

T
Y
P
E

9 • WILLIAM TELL: THE END IS NIGH

91

9 • William Tell: the end is nigh

Q was a queen, who wore a silk slip;
R was a robber, and wanted a whip.

uite a few objects still remain undefined, so we’ll talk about them first.
Then, we’ll explain how to make additions to Inform’s standard
repertoire of verbs, and how to define the actions which those verbs
trigger.

The marketplace

The marketplace room is unremarkable, and the tree growing there has only one
feature of interest:

Room marketplace "Marketplace near the square"
with description

"Altdorf's marketplace, close by the town square, has been hastily
 cleared of stalls. A troop of soldiers has pushed back the crowd
 to leave a clear space in front of the lime tree, which has been
 growing here for as long as anybody can remember. Usually it
 provides shade for the old men of the town, who gather below to
 gossip, watch the girls, and play cards. Today, though, it
 stands alone... apart, that is, from Walter, who has been lashed
 to the trunk. About forty yards away, you are restrained by two
 of the vogt's men.",

cant_go "What? And leave your son tied up here?";

Object tree "lime tree" marketplace
with name 'lime' 'tree',

description "It's just a large tree.",
before [; FireAt:

if (BowOrArrow(second)) {
deadflag = 3;
print_ret "Your hand shakes a little, and your arrow flies

high, hitting the trunk a few inches above Walter's
head.";

}
return true;

],
has scenery;

The tree’s before property is intercepting a FireAt action, which we’ll define in a
few moments. This action is the result of a command like SHOOT AT TREE
WITH BOW – we could simulate it with the statement <<FireAt tree bow>> – and
it needs extra care to ensure that the second object is a feasible weapon. To deal
with silly commands like SHOOT AT TREE WITH HELGA, we must test that
second is the bow, one of the arrows, or nothing (from just SHOOT AT TREE).
Since this is quite a complex test, and one that we’ll be making in several places,
it’s sensible to write a routine to do the job. Which we’ll do shortly – but first, a
general introduction to working with routines.

T
Y
P
E

9 • WILLIAM TELL: THE END IS NIGH

92

A standalone routine, like the familiar routines embedded as the value of a
property such as before or each_turn, is simply a collection of statements to be
executed. The major differences are in content, in timing, and in the default
return value:

• Whereas an embedded routine has to contain statements which do
something appropriate for that associated property variable, a standalone
routine can contain statements which do anything you wish. You have total
freedom as to what the routine actually does and what value it returns.

• An embedded routine is called when the interpreter is dealing with that
property of that object; you provide the routine, but you don’t directly
control when it’s called. A standalone routine, however, is completely under
your control; it runs only when you explicitly call it.

• If an embedded routine executes all of its statements and reaches the final];
without encountering some form of return statement, it returns the value
false. In the same circumstances, a standalone routine returns the value true.
There’s a good reason for this difference – it turns out to be the natural
default behaviour more often than not – but it can sometimes baffle
newcomers. To avoid confusion, we’ve always included explicit return
statements in our routines.

What this generally boils down to is: if you have a collection of statements which
perform some specific task and you need to execute those same statements in
more than one place in your game, then it often makes sense to turn those
statements into a standalone routine. The advantages are: you write the
statements only once, so any subsequent changes are easier to make; also, your
game becomes simpler and easier to read. We’ll look at some simple examples.

At the start of the previous chapter, we defined these objects:

Prop "pole"
with name 'wooden' 'pole',

description "You're too far away to see any detail.",
found_in south_square north_square;

Prop "hat"
with name 'hat',

description "You're too far away to see any detail.",
found_in south_square north_square;

The descriptions are identical: perhaps we could display them using a routine?

[TooFarAway; print_ret "You're too far away to see any detail.";];

Prop "pole"
with name 'wooden' 'pole',

description [; TooFarAway();],
found_in south_square north_square;

9 • WILLIAM TELL: THE END IS NIGH

93

Prop "hat"
with name 'hat',

description [; TooFarAway();],
found_in south_square north_square;

This isn’t a very realistic approach – there are more elegant ways of avoiding
typing the same string twice – but it works, and it illustrates how we can define a
routine to do something useful, and then call it wherever we need to.

Here’s another simple example showing how, by returning a value, a routine can
report back to the piece of code which called it. We’ve once or twice used the test
if (self has visited) ...; we could create a routine which performs that same
check and then returns true or false to indicate what it discovered:

[BeenHereBefore;
if (self has visited) return true;
else return false;

];

Then, we’d rewrite our test as if (BeenHereBefore() == true) ...; no shorter or
quicker, but maybe more descriptive of what’s going on.

One more example of using routines. As well as testing if (self has visited) ...
we’ve also tested if (location has visited) ... a few times, so we could write
another routine to perform that check:

[BeenThereBefore;
if (location has visited) return true;
else return false;

];

However, the two routines are very similar; the only difference is the name of the
variable – self or location – which is being checked. A better approach might be
to rework our BeenHereBefore routine so that it does both jobs, but we somehow
need to tell it which variable’s value is to be checked. That’s easy: we design the
routine so that it expects an argument:

[BeenToBefore this_room;
if (this_room has visited) return true;
else return false;

];

Notice that the argument’s name is one that we’ve invented to be descriptive of
its content; it doesn’t matter if we define it as “x”, “this_room” or “hubba_hubba”.
Whatever its name, the argument acts as a placeholder for a value (here, one of
the variables self or location) which we must supply when calling the routine:

if (BeenToBefore(self) == true) ...

if (BeenToBefore(location) == true) ...

In the first line, we supply self as the routine’s argument. The routine doesn’t
care where the argument came from; it just sees a value which it knows as
this_room, and which it then uses to test for the visited attribute. On the second
line we supply location as the argument, but the routine just sees another value

9 • WILLIAM TELL: THE END IS NIGH

94

in its this_room variable. this_room is called a local variable of the BeenToBefore
routine, one that must be set to a suitable value each time that the routine is
called. In this example routine, the value needs to be a room object; we could
also check an explicit named room:

if (BeenToBefore(mid_square) == true) ...

Remember that all routines return something sooner or later, either because you
explicitly write a return, rtrue or rfalse statement, or because execution reaches
the] marking the routine’s end (in which case the default STEF rule applies:
Standalone routines return True, Embedded routines return False). We gave this
example of an embedded routine in “Adding some props” on page 71. The
return false statement is redundant: we could remove it without affecting the
routine’s behaviour:

found_in [;
if (location == street or below_square or south_square or

mid_square or north_square or marketplace) return true;
return false;

],

After all that introduction, finally back to the FireAt action. We want to check on
the characteristics of an object, possibly then displaying a message. We don’t
know exactly which object is to be checked, so we need to write our routine in a
generalised way, capable of checking any object which we choose; that is, we’ll
supply the object to be checked as an argument. Here’s the routine:

[BowOrArrow o;
if (o == bow or nothing || o ofclass Arrow) return true;
print "That's an unlikely weapon, isn't it?^";
return false;

];

The routine is designed to inspect any object which is passed to it as its
argument o; that is, we could call the routine like this:

BowOrArrow(stallholder)
BowOrArrow(tree)
BowOrArrow(bow)

Given the bow object, or any object which we defined as class Arrow, it will silently
return true to signify agreement that this object can be fired. However, given an
object like Helga, the apple or the tree, it will print a message and return false to
signify that this object is not a suitable weapon. The test that we make is:

if (o == bow or nothing || o ofclass Arrow) ...

which is merely a slightly shorter way of saying this:

if (o == bow || o == nothing || o ofclass Arrow) ...

The result is that we ask three questions: Is o the bow object? Or is it nothing? Or,
using the ofclass test, is it any object which is a member of the Arrow class?

T
Y
P
E

9 • WILLIAM TELL: THE END IS NIGH

95

What this means is that the value returned by the call BowOrArrow(bow) is true,
while the value returned by the call BowOrArrow(tree) is false. Or, more generally,
the value returned by the call BowOrArrow(second) will be either true or false,
depending on the characteristics of the object defined by the value of the variable
second. So, we can write this set of statements in an object’s before property:

if (BowOrArrow(second)) {
This object deals with having an arrow fired at it

}
return true;

and the effect is either

• second is a weapon: BowOrArrow displays nothing and returns a value of true,
the if statement reacts to that value and executes the following statements to
produce an appropriate response to the fast-approaching arrow; or

• second isn’t a weapon: BowOrArrow displays a standard “don’t be silly” message
and returns a value of false, the if statement reacts to that value and ignores
the following statements. Then

• in both cases, the return true statement terminates the object’s interception
of the FireAt action.

That bit was rather complex, but the rest of the FireAt action is straightforward.
Once the tree has determined that it’s being shot at by something sensible, it can
just set deadflag to 3 – the “You have screwed up” ending, display a message, and
be done.

Gessler the governor

There’s nothing in Gessler’s definition that we haven’t already encountered:

NPC governor "governor" marketplace
with name 'governor' 'vogt' 'Hermann' 'Gessler',

description
"Short, stout but with a thin, mean face, Gessler relishes the
 power he holds over the local community.",

initial [;
print "Gessler is watching from a safe distance,

a sneer on his face.^";
if (location hasnt visited)

print_ret "^~It appears that you need to be taught a lesson,
fool. Nobody shall pass through the square without paying
homage to His Imperial Highness Albert; nobody, hear me?
I could have you beheaded for treason, but I'm going to
be lenient. If you should be so foolish again, you can
expect no mercy, but this time, I'll let you go free...
just as soon as you demonstrate your archery skills by
hitting this apple from where you stand. That shouldn't
prove too difficult; here, sergeant, catch. Balance it on
the little bastard's head.~";

],

T
Y
P
E

9 • WILLIAM TELL: THE END IS NIGH

96

life [;
Talk: print_ret "You cannot bring yourself to speak to him.";

],
before [; FireAt:

if (BowOrArrow(second)) {
deadflag = 3;
print_ret "Before the startled soldiers can react, you turn

and fire at Gessler; your arrow pierces his heart,
and he dies messily. A gasp, and then a cheer,
goes up from the crowd.";

}
return true;

],
has male;

Like most NPCs, Gessler has a life property which deals with actions applicable
only to animate objects. This one responds merely to Talk (as in TALK TO THE
GOVERNOR).

Walter and the apple

Since he’s been with you throughout, it’s really about time we defined Walter:

NPC son "your son"
with name 'son' 'your' 'boy' 'lad' 'Walter',

description [;
if (location == marketplace)

print_ret "He stares at you, trying to appear brave and
remain still. His arms are pulled back and tied behind
the trunk, and the apple nestles amid his blond hair.";

else
print_ret "A quiet, blond lad of eight summers, he's fast

learning the ways of mountain folk.";
],
life [;

Give:
score = score + 1;
move noun to self;
print_ret "~Thank you, Papa.~";

Talk:
if (location == marketplace)

print_ret "~Stay calm, my son, and trust in God.~";
else

print_ret "You point out a few interesting sights.";
],
before [;

Examine,Listen,Salute,Talk: return false;
FireAt:

if (location == marketplace) {
if (BowOrArrow(second)) {

deadflag = 3;
print_ret "Oops! Surely you didn't mean to do that?";

}
return true;

}

T
Y
P
E

9 • WILLIAM TELL: THE END IS NIGH

97

else
return false;

default:
if (location == marketplace)

print_ret "Your guards won't permit it.";
else

return false;
],
found_in [; return true;],

has male proper scenery transparent;

His attributes are male (he’s your son, after all), proper (so the interpreter doesn’t
mention “the your son”), scenery (so he’s not listed in every room description),
and transparent (because you see right through him). No, that’s wrong: a
transparent object isn’t made of glass; it’s one whose possessions are visible to
you. We’ve done that because we’d still like to be able to EXAMINE APPLE even
when Walter is carrying it. Without the transparent attribute, it would be as
though the apple was in his pocket or otherwise out of sight; the interpreter
would reply “You can’t see any such thing”.

Walter has a found_in property which automatically moves him to the player’s
location on each turn. We can get away with this because in such a short and
simple game, he does indeed follow you everywhere. In a more realistic model
world, NPCs often move around independently, but we don’t need such
complexity here.

Several of Walter’s properties test whether (location == marketplace); that is, is
the player (and hence Walter) currently in that room? The events in the
marketplace are such that specialised responses are more appropriate there than
our standard ones.

Walter’s life property responds to Give (as in GIVE APPLE TO WALTER) and
Talk (as in TALK TO YOUR SON); during Give, we increment the library variable
score, thus rewarding the player’s generous good nature. His before property is
perhaps a little confusing. It’s saying:

1. The Examine, Listen, Salute and Talk actions are always available (a Talk action
then gets passed to Walter’s life property).

2. The FireAt action is permitted in the marketplace, albeit with unfortunate
results. Elsewhere, it triggers the standard FireAt response of “Pretty
dangerous, don’t you think?”

3. All other actions are prevented in the marketplace, and allowed to run their
standard course (thanks to the return false) elsewhere.

The apple’s moment of glory has arrived! Its before property responds to the
FireAt action by setting deadflag to 2. When that happens, the game is over; the
player has won.

9 • WILLIAM TELL: THE END IS NIGH

98

Object apple "apple"
with name 'apple',

description [;
if (location == marketplace)

print_ret "At this distance you can barely see it.";
else

print_ret "The apple is blotchy green and brown.";
],
before [;

Drop: print_ret "An apple is worth quite a bit --
better hang on to it.";

Eat: print_ret "Helga intended it for Walter...";
FireAt:

if (location == marketplace) {
if (BowOrArrow(second)) {

score = score + 1;
deadflag = 2;
print_ret "Slowly and steadily, you place an arrow in

the bow, draw back the string, and take aim with
more care than ever in your life. Holding your
breath, unblinking, fearful, you release the
arrow. It flies across the square towards your
son, and drives the apple against the trunk of
the tree. The crowd erupts with joy;
Gessler looks distinctly disappointed.";

}
return true;

}
else

return false;
];

And with that, we’ve defined all of the objects. In doing so, we’ve added a whole
load of new nouns and adjectives to the game’s dictionary, but no verbs. That’s
the final task.

Verbs, verbs, verbs

The Inform library delivers a standard set of nearly a hundred actions which
players can perform; around twenty of those are “meta-actions” (like SAVE and
QUIT) aimed at the interpreter itself, and the remainder operate within the
model world. Having such a large starting set is a great blessing; it means that
many of the actions which players might attempt are already catered for, either
by the interpreter doing something useful, or by explaining why it’s unable to.
Nevertheless, most games find the need to define additional actions, and
“William Tell” is no exception. We’ll be adding four actions of our own: Untie,
Salute (see page 100), FireAt (see page 102) and Talk (see page 103).

Untie

It’s not the most useful action, but it is the simplest. In the marketplace, when
Walter is lashed to the tree, it’s possible that players might be tempted to try to
UNTIE WALTER; unlikely, but as we’ve said before, anticipating the

T
Y
P
E

9 • WILLIAM TELL: THE END IS NIGH

99

improbable is part of the craft of IF. For this, and for all new actions, two things
are required. We need a grammar definition, spelling out the structure of the
English sentences which we’re prepared to accept:

Verb 'untie' 'unfasten' 'unfix' 'free' 'release'
* noun -> Untie;

and we need a routine to handle the action in the default situation (where the
action isn’t intercepted by an object’s before property).

[UntieSub; print_ret "You really shouldn't try that.";];

The grammar is less complex than it perhaps at first appears:

1. The English verbs UNTIE, UNFASTEN, UNFIX, FREE and RELEASE are
synonymous.

2. The asterisk * indicates the start of a pattern defining what word(s) might
follow the verb.

3. In this example, there’s only one pattern: the “noun” token represents an
object which is currently in scope – in the same room as the player.

4. The -> indicates an action to be triggered.

5. If players type something that matches the pattern – one of those five verbs
followed by an object in scope – the interpreter triggers an Untie action,
which by default is handled by a routine having the same name as the action,
with Sub appended. In this example, that’s the UntieSub routine.

6. The grammar is laid out this way just to make it easier to read. All those
spaces aren’t important; we could equally have typed:

Verb 'untie' 'unfasten' 'unfix' 'free' 'release' * noun -> Untie;

We can illustrate how this works in the Altdorf street:

A street in Altdorf
The narrow street runs north towards the town square. Local folk are pouring
into the town through the gate to the south, shouting greetings, offering
produce for sale, exchanging news, enquiring with exaggerated disbelief about
the prices of the goods displayed by merchants whose stalls make progress even
more difficult.

"Stay close to me, son," you say, "or you'll get lost among all these people."

>UNTIE
What do you want to untie?

>UNFASTEN THE DOG
You can't see any such thing.

>UNTIE THE PEOPLE
You don't need to worry about the local people.

>UNFIX YOUR SON
You really shouldn't try that.

T
Y
P
E

T
Y
P
E

9 • WILLIAM TELL: THE END IS NIGH

100

The illustration shows four attempted usages of the new action. In the first, the
player omits to mention an object; the interpreter knows (from that noun in the
grammar which implies that the action needs a direct object) that something is
missing, so it issues a helpful prompt. In the second, the player mentions an
object that isn’t in scope (in fact, there’s no dog anywhere in the game, but the
interpreter isn’t about to give that away to the player). In the third, the object is
in scope, but its before property intercepts the Untie action (and indeed, since this
object is of the class Prop, all actions apart from Examine) to display a customised
rejection message. Finally, the fourth usage refers to an object which doesn’t
intercept the action, so the interpreter calls the default action handler – UntieSub
– which displays a general-purpose refusal to perform the action.

The principles presented here are those that you should generally employ: write
a generic action handler which either refuses to do anything (see, for example
SQUASH or HIT), or performs the action without affecting the state of the model
world (see, for example, JUMP or WAVE); then, intercept that non-action
(generally using a before property) for those objects which might make a
legitimate target for the action, and instead provide a more specific response,
either performing or rejecting the action.

In the case of Untie, there are no objects which can be untied in this game, so we
always generate a refusal of some sort.

Salute

The next action is Salute, provided in case Wilhelm chooses to defer to the hat
on the pole. Here’s the default action handler:

[SaluteSub;
if (noun has animate) print_ret (The) noun, " acknowledges you.";
print_ret (The) noun, " takes no notice.";

];

You’ll notice that this is slightly more intelligent than our Untie handler, since it
produces different responses depending on whether the object being saluted –
stored in the noun variable – is animate or not. But it’s basically doing the same job.
And here’s the grammar:

Verb 'bow' 'nod' 'kowtow' 'genuflect'
* 'at'/'to'/'towards' noun -> Salute;

Verb 'salute' 'greet' 'acknowledge'
* noun -> Salute;

This grammar says that:

1. The English verbs BOW, NOD, KOWTOW, GENUFLECT, SALUTE,
GREET and ACKNOWLEDGE are synonymous.

2. The first four (but not the last three) can then be followed by any of the
prepositions AT, TO or TOWARDS: words in apostrophes '...' are matched
literally, with the slash / separating alternatives.

T
Y
P
E

T
Y
P
E

9 • WILLIAM TELL: THE END IS NIGH

101

3. After that comes the name of an object which is currently in scope – in the
same room as the player.

4. If players type something that matches one of those patterns, the interpreter
triggers a Salute action, which by default is dealt with by the SaluteSub routine.

So, we’re allowing BOW AT HAT and KOWTOW TOWARDS HAT, but not
simply NOD HAT. We’re allowing SALUTE HAT but not GREET TO HAT. It’s
not perfect, but it’s a fair attempt at defining some new verbs to handle salutation.

But suppose that we think of still other ways in which players might attempt this
(remember, they don’t know which verbs we’ve defined; they’re just stabbing in
the dark, trying out things that seem as though they ought to work). How about
PAY HOMAGE TO HAT, or maybe WAVE AT HAT? They sound pretty
reasonable, don’t they? Except that, if we’d written:

Verb 'bow' 'nod' 'kowtow' 'genuflect' 'wave'
* 'at'/'to'/'towards' noun -> Salute;

we’d have caused a compilation error: two different verb definitions refer to
“wave”. Grammar.h, one of the library files whose contents a beginner might find
useful to study, contains these lines:

Verb 'give' 'pay' 'offer' 'feed'
* held 'to' creature -> Give
* creature held -> Give reverse
* 'over' held 'to' creature -> Give;

Verb 'wave'
* -> WaveHands
* noun -> Wave;

The problem is that the verbs PAY and WAVE are already defined by the library,
and Inform’s rule is that a verb can appear in only one Verb definition. The wrong
solution: edit Grammar.h to physically add lines to the existing definitions (it’s almost
never a good idea to make changes to the standard library files). The right
solution: use Extend to logically add those lines. If we write this in our source file:

Extend 'give'
* 'homage' 'to' noun -> Salute;

Extend 'wave'
* 'at' noun -> Salute;

then the effect is exactly as if we’d edited Grammar.h to read like this:

Verb 'give' 'pay' 'offer' 'feed'
* held 'to' creature -> Give
* creature held -> Give reverse
* 'over' held 'to' creature -> Give
* 'homage' 'to' noun -> Salute;

Verb 'wave'
* -> WaveHands
* noun -> Wave
* 'at' noun -> Salute;

T
Y
P
E

9 • WILLIAM TELL: THE END IS NIGH

102

and now players can PAY (or GIVE, or OFFER) HOMAGE to any object.
(Because GIVE, PAY, OFFER and FEED are defined as synonyms, players can
also FEED HOMAGE, but it’s unlikely that anybody will notice this minor
aberration; players are usually too busy trying to figure out logical possibilities.)

FireAt

As usual, we’ll show you the default handler for this action:

[FireAtSub;
if (noun == nothing)

print_ret "What, just fire off an arrow at random?";
if (BowOrArrow(second))

print_ret "Pretty dangerous, don't you think?";
];

followed by the grammar:

Verb 'fire' 'shoot' 'aim'
* -> FireAt
* noun -> FireAt
* 'at' noun -> FireAt
* 'at' noun 'with' noun -> FireAt
* noun 'with' noun -> FireAt
* noun 'at' noun -> FireAt reverse;

This is the most complex grammar that we’ll write, and the first one offering
several different options for the words which follow the initial verb. The first line
of grammar:

* -> FireAt

is going to let us type FIRE (or SHOOT, or AIM) by itself. The second line:

* noun -> FireAt

supports FIRE BOW or FIRE ARROW (or something less sensible like
FIRE TREE). The third line:

* 'at' noun -> FireAt

accepts FIRE AT APPLE, FIRE AT TREE, and so on. Note that there’s only one
semicolon in all of the grammar, right at the very end.

The first two statements in FireAtSub deal with the first line of grammar: FIRE (or
SHOOT, or AIM) by itself. If the player types just that, both noun and second will
contain nothing, so we reject the attempt with the “at random?” message.
Otherwise, we’ve got at least a noun value, and possibly a second value also, so we
make our standard check that second is something that can be fired, and then
reject the attempt with the “Pretty dangerous” message.

There are a couple of reasons why you might find this grammar a bit tricky. The
first is that on some lines the word noun appears twice: you need to remember that
in this context noun is a parsing token which matches any single object visible to
the player. Thus, the line:

T
Y
P
E

T
Y
P
E

9 • WILLIAM TELL: THE END IS NIGH

103

* 'at' noun 'with' noun -> FireAt

is matching FIRE AT some_visible_target WITH some_visible_weapon; perhaps
confusingly, the value of the target object is then stored in variable noun, and the
value of the weapon object in variable second.

The second difficulty may be the final grammar line. Whereas on the preceding
lines, the first noun matches a target object and the second noun, if present, matches
a weapon object, that final line matches FIRE some_visible_weapon AT
some_visible_target – the two objects are mentioned in the wrong sequence. If we
did nothing, our FireAtSub would get pretty confused at this point, but we can
swap the two objects back into the expected order by adding that reverse
keyword at the end of the line, and then FireAtSub will work the same in all cases.

Talk

The final action that we define – Talk – provides a simple system of canned
conversation, a low-key replacement for the standard Answer, Ask and Tell actions.
The default TalkSub handler is closely based on TellSub (defined in library file
verblibm.h, should you be curious), and does three things:

1. Deals with TALK TO ME or TALK TO MYSELF.

2. Checks (a) whether the creature being talked to has a life property, (b)
whether that property is prepared to process a Talk action, and (c) if the Talk
processing returns true. If all three checks succeed then TalkSub need do
nothing more; if one or more of them fails then TalkSub simply...

3. Displays a general “nothing to say” refusal to talk.

[TalkSub;
if (noun == player) print_ret "Nothing you hear surprises you.";
if (RunLife(noun,##Talk) ~= false) return;
print_ret "At the moment, you can't think of anything to say.";

];

NOTE: that second condition (RunLife(noun,##Talk) ~= false) is a bit of a
stumbling block, since it uses RunLife – an undocumented internal library
routine – to offer the Talk action to the NPC’s life property. We’ve decided
to use it in exactly the same way as the Tell action does, without worrying too
much about how it works (though it looks as though RunLife returns some true
value if the life property has intercepted the action, false if it hasn’t).

The grammar is straightforward; notice the use of 't//' to define T as a synonym
for TALK:

Verb 'talk' 't//' 'converse' 'chat' 'gossip'
* 'to'/'with' creature -> Talk
* creature -> Talk;

Here’s the simplest Talk handler that we’ve seen – it’s from Gessler the governor.
Any attempt to TALK TO GESSLER will provoke “You cannot bring yourself to
speak to him”.

T
Y
P
E

T
Y
P
E

9 • WILLIAM TELL: THE END IS NIGH

104

life [;
Talk: print_ret "You cannot bring yourself to speak to him.";

],

Walter’s Talk handler is only slightly more involved:

life [;
Talk:

if (location == marketplace)
print_ret "~Stay calm, my son, and trust in God.~";

print_ret "You point out a few interesting sights.";
],

And Helga’s is the most sophisticated (though that isn’t saying much):

times_spoken_to 0, ! for counting the conversation topics
life [; Talk:

self.times_spoken_to = self.times_spoken_to + 1;
switch (self.times_spoken_to) {

1: score = score + 1;
print_ret "You warmly thank Helga for the apple.";

2: score = score + 1;
print_ret "~See you again soon.~";

default: return false;
}

],

This handler uses Helga’s times_spoken_to property – not a library property, it’s
one that we invented, like the mid_square.warnings_count and pole.has_been_saluted
properties – to keep track of what’s been said, permitting two snatches of
conversation (and awarding some points) before falling back on the embarrassing
silences implied by “You can’t think of anything to say”.

That’s the end of our little fable; you’ll find a transcript and the full source in
“William Tell” story on page 195. And now, it’s time to meet – Captain Fate!

10 • CAPTAIN FATE: TAKE 1

105

10 • Captain Fate: take 1

S was a sailor, and spent all he got;
T was a tinker, and mended a pot.

imple though they are, our two games have covered most of the basic
functionality of Inform, providing enough solid ground underfoot
for you to start creating simple stories. Even if some of what you’ve
encountered doesn’t make sense yet, you should be able to browse a

game’s source code and form a general understanding of what is going on.

We’ll now design a third game, to show you a few additional features and give
you some more sample code to analyse. In “Heidi” we tried to make progress
step by step, explaining every bit of code that went into the game as we laid the
objects sequentially; in “William Tell” you’ll have noticed that we took a few
necessary explanatory detours, as the concepts grew more interesting and
complicated. Here we’ll organise the information in logical didactic chunks,
defining some of the objects minimally at first and then adding complexity as
need arises. Again, this means that you won’t be able to compile for testing
purposes after the addition of every code snippet, so, if you’re typing in the game
as you read, you’ll need to check the advice in “Compile-as-you-go” on page 227.

A lot of what goes into this game we have already seen; you may deduce from
this that the game design business is fairly repetitious and that most games are,
when you reach the programming bottom line, another remake of the same old
theme. Well, yes and no: you’ve got a camera and have seen some short home
videos in the making, but it’s a long way from here to Casablanca. To stick with
the analogy, we’ll now construct the opening sequence of an indie B-movie, a
tribute to the style of super-hero made famous by a childhood of comic books:

“Impersonating mild mannered John Covarth, assistant help boy at an
insignificant drugstore, you suddenly STOP when your acute hearing deciphers
a stray radio call from the POLICE. There’s some MADMAN attacking the
population in Granary Park! You must change into your Captain FATE costume
fast...!”

which won’t be so easy to do. In this short example, players will win when they
manage to change into their super-hero costume and fly away to meet the foe.
The confrontation will – perhaps – take place in some other game, where we can
but hope that Captain Fate will vanquish the forces of evil, thanks to his
mysterious (and here unspecified) superpowers.

Fade up on: a nondescript city street

The game starts with meek John Covarth walking down the street. We set up the
game as usual:

10 • CAPTAIN FATE: TAKE 1

106

!==
Constant Story "Captain Fate";
Constant Headline

"^A simple Inform example
 ^by Roger Firth and Sonja Kesserich.^";

Release 2; Serial "020827"; ! for keeping track of public releases

Constant MANUAL_PRONOUNS;
Constant MAX_SCORE 2;
Constant OBJECT_SCORE 1;
Constant ROOM_SCORE 1;

Include "Parser";
Include "VerbLib";

!==
! Object classes

Class Room
with description "UNDER CONSTRUCTION",
has light;

Class Appliance
with before [; Take,Pull,Push,PushDir:

"Even though your SCULPTED adamantine muscles are up to the task,
 you don't favour property damage.";

],
has scenery;

!==
! The game objects

Room street "On the street"
with name 'city' 'buildings' 'skyscrapers' 'shops' 'apartments' 'cars',

description [;
"On one side -- which your HEIGHTENED sense of direction
 indicates is NORTH -- there's an open cafe now serving
 lunch. To the south, you can see a phone booth.";

!==
! The player's possessions

!==
! Entry point routines

[Initialise;
location = street;
lookmode = 2;
"^^Impersonating mild mannered John Covarth, assistant help boy at an
 insignificant drugstore, you suddenly STOP when your acute hearing
 deciphers a stray radio call from the POLICE. There's some MADMAN
 attacking the population in Granary Park! You must change into your
 Captain FATE costume fast...!^^";

];
!==
! Standard and extended grammar

Include "Grammar";

!==

T
Y
P
E

10 • CAPTAIN FATE: TAKE 1

107

Almost everything is familiar, apart from a few details:

Constant MANUAL_PRONOUNS;
Constant MAX_SCORE 2;
Constant OBJECT_SCORE 1;
Constant ROOM_SCORE 1;

By default, Inform uses a system of automatic pronouns: as the player character
moves into a room, the library assigns pronouns like IT and HIM to likely objects
(if you play “Heidi” or “William Tell” and type PRONOUNS, you can see how
the settings change). There is another option. If we declare the MANUAL_PRONOUNS
constant, we force the library to assign pronouns to objects only as the player
mentions them (that is, IT will be unassigned until the player types, say,
EXAMINE TREE, at which point, IT becomes the TREE). The behaviour of
pronoun assignment is a matter of personal taste; no system is objectively perfect.

Apart from the constant MAX_SCORE that we have seen in “William Tell”, which
defines the maximum number of points to be scored, we now see two more
constants: OBJECT_SCORE and ROOM_SCORE. There are several scoring systems
predefined in Inform. In “William Tell” we’ve seen how you can manually add
(or subtract) points by changing the value of the variable score. Another
approach is to award points to players on the first occasion that they (a) enter a
particular room, or (b) pick up a particular object. To define that a room or object
is indeed “particular”, all you have to do is give it the attribute scored; the library
take cares of the rest. The predefined scores are five points for finally reached
rooms and four points for wondrous acquisition of objects. With the constants
OBJECT_SCORE and ROOM_SCORE we can change those defaults; for the sake of example,
we’ve decided to modestly award one point for each. By the way, the use of an
equals sign = is optional with Constant; these two lines have identical effect:

Constant ROOM_SCORE 1;

Constant ROOM_SCORE = 1;

Another difference has to do with a special short-hand method that Inform
provides for displaying strings of text. Until now, we have shown you:

print "And now for something completely different...^"; return true;
...
print_ret "And now for something completely different...";

Both lines do the same thing: they display the quoted string, output a newline
character, and return true. As you have seen in the previous example games, this
happens quite a lot, so there is a yet shorter way of achieving the same result:

"And now for something completely different...";

That is, in a routine (where the compiler is expecting to find a collection of
statements each terminated by a semicolon), a string in double quotes by itself,
without the need for any explicit keywords, works exactly as if there were a
print_ret in front of it. Remember that this way of displaying text implies a
return true at the end (which therefore exits from the routine immediately). This

10 • CAPTAIN FATE: TAKE 1

108

detail becomes important if we don’t want to return true after the string has been
displayed on the screen – we should use the explicit print statement instead.

You’ll notice that – unusually for a room – our street object has a name property:

Room street "On the street"
with name 'city' 'buildings' 'skyscrapers' 'shops' 'apartments' 'cars',

...

Rooms aren’t normally referenced by name, so this may seem odd. In fact, we’re
illustrating a feature of Inform: the ability to define dictionary words as “known
but irrelevant” in this location. If the player types EXAMINE CITY here, the
interpreter will reply “That’s not something you need to refer to in order to
SAVE the day”, rather than the misleading “You can’ t see any such thing”. We
mostly prefer to deal with such scenic words using classes like Prop and Furniture,
but sometimes a room’s name property is a quick and convenient solution.

In this game, we provide a class named Appliance to take care of furniture and
unmovable objects. You’ll notice that the starting room we have defined has no
connections yet. The description mentions a phone booth and a café, so we might
want to code those. While the café will be a normal room, it would seem logical
that the phone booth is actually a big box on the sidewalk; therefore we define a
container set in the street, which players may enter.

Appliance booth "phone booth" street
with name 'old' 'red' 'picturesque' 'phone' 'booth' 'cabin'

'telephone' 'box',
description

"It's one of the old picturesque models, a red cabin with room
 for one caller.",

before [;
Open: "The booth is already open.";
Close: "There's no way to close this booth.";

],
after [; Enter:

"With implausible celerity, you dive inside the phone booth.";
],

has enterable container open;

What’s interesting are the attributes at the end of the definition. You’ll recall from
Heidi’s nest object that a container is an object capable of having other objects
placed in it. If we make something enterable, players count as one of those
objects, so that they may squeeze inside. Finally, containers are, by default,
supposed to be closed. You can make them openable if you wish players to be able
to OPEN and CLOSE them at will, but this doesn’t seem appropriate behaviour
for a public cabin – it would become tedious to have to type OPEN BOOTH and
CLOSE BOOTH when these actions provide nothing special – so we add instead
the attribute open (as we did with the nest), telling the interpreter that the
container is open from the word go. Players aren’t aware of our design, of course;
they may indeed try to OPEN and CLOSE the booth, so we trap those actions in
a before property which just tells them that these are not relevant options. The

T
Y
P
E

10 • CAPTAIN FATE: TAKE 1

109

after property gives a customised message to override the library’s default for
commands like ENTER BOOTH or GO INSIDE BOOTH.

Since in the street’s description we have told players that the phone booth is to
the south, they might also try typing SOUTH. We must intercept this attempt and
redirect it (while we’re at it, we add a connection to the as-yet-undefined café
room and a default message for the movement which is not allowed):

Room street "On the street"
with name 'city' 'buildings' 'skyscrapers' 'shops' 'apartments' 'cars',

description [;
"On one side -- which your HEIGHTENED sense of direction
 indicates is NORTH -- there's an open cafe now serving
 lunch. To the south, you can see a phone booth.",

n_to cafe,
s_to [; <<Enter booth>>;],
cant_go

"No time now for exploring! You'll move much faster in your
 Captain FATE costume.";

That takes care of entering the booth. But what about leaving it? Players may
type EXIT or OUT while they are inside an enterable container and the
interpreter will oblige but, again, they might type NORTH. This is a problem,
since we are actually in the street (albeit inside the booth) and to the north we
have the café. We may provide for this condition in the room’s before property:

before [; Go:
if (player in booth && noun == n_obj) <<Exit booth>>;

],

Since we are outdoors and the booth provides a shelter, it’s not impossible that a
player may try just IN, which is a perfectly valid connection. However, that
would be an ambiguous command, for it could also refer to the café, so we
express our bafflement and force the player to try something else:

n_to cafe,
s_to [; <<Enter booth>>;],
in_to "But which way?",

Now everything seems to be fine, except for a tiny detail. We’ve said that, while
in the booth, the player character’s location is still the street room, regardless of
being inside a container; if players chanced to type LOOK, they’d get:

On the street (in the phone booth)
On one side -- which your HEIGHTENED sense of direction indicates is NORTH --
there's an open cafe now serving lunch. To the south, you can see a phone booth.

Hardly an adequate description while inside the booth. There are several ways to
fix the problem, depending on the result you wish to achieve. The library
provides a property called inside_description which you can utilise with enterable
containers. It works pretty much like the normal description property, but it gets
printed only when the player is inside the container. The library makes use of this
property in a very clever way, because for every LOOK action it checks whether
we can see outside the container: if the container has the transparent attribute set,

10 • CAPTAIN FATE: TAKE 1

110

or if it happens to be open, the library displays the normal description of the room
first and then the inside_description of the container. If the library decides we
can’t see outside the container, only the inside_description is displayed. Take for
instance the following (simplified) example:

Room stage "On stage"
with description

"The stage is filled with David Copperfield's
 magical contraptions.",

...

Object magic_box "magic box" stage
with description

"A big elongated box decorated with silver stars, where
 scantily clad ladies make a disappearing act.",

inside_description
"The inside panels of the magic box are covered with black
 velvet. There is a tiny switch by your right foot.",

...
has container openable enterable light;

Now, the player would be able to OPEN BOX and ENTER BOX. A player who
tried a LOOK would get:

On stage (in the magic box)
The stage is filled with David Copperfield's magical contraptions.

The inside panels of the magic box are covered with black velvet. There is a
tiny switch by your right foot.

If now the player closes the box and LOOKs:

On stage (in the magic box)
The inside panels of the magic box are covered with black velvet. There is a
tiny switch by your right foot.

In our case, however, we don’t wish the description of the street to be displayed
at all (even if a caller is supposedly able to see the street while inside a booth).
The problem is that we have made the booth an open container, so the street’s
description would be displayed every time. There is another solution. We can
make the description property of the street room a bit more complex, and
change its value: instead of a string, we write an embedded routine. Here’s the
(almost) finished room:

Room street "On the street"
with name 'city' 'buildings' 'skyscrapers' 'shops' 'apartments' 'cars',

description [;
if (player in booth)

"From this VANTAGE point, you are rewarded with a broad view
 of the sidewalk and the entrance to Benny's cafe.";

else
"On one side -- which your HEIGHTENED sense of direction
 indicates is NORTH -- there's an open cafe now serving
 lunch. To the south, you can see a phone booth.";

],
before [; Go:

if (player in booth && noun == n_obj) <<Exit booth>>;
],

T
Y
P
E

10 • CAPTAIN FATE: TAKE 1

111

n_to cafe,
s_to [; <<Enter booth>>;],
in_to "But which way?",
cant_go

"No time now for exploring! You'll move much faster in your
 Captain FATE costume.";

The description while inside the booth mentions the sidewalk, which might invite
the player to EXAMINE it. No problem:

Appliance "sidewalk" street
with name 'sidewalk' 'pavement' 'street',

article "the",
description

"You make a quick surveillance of the sidewalk and discover much
 to your surprise that it looks JUST like any other sidewalk in
 the CITY!";

Unfortunately, both descriptions also mention the café, which will be a room and
therefore not, from the outside, an examinable object. The player may enter it
and will get whatever description we code as the result of a LOOK action (which
will have to do with the way the café looks from the inside); but while we are on
the street we need something else to describe it:

Appliance outside_of_cafe "Benny's cafe" street
with name 'benny^s' 'cafe' 'entrance',

description
"The town's favourite for a quick snack, Benny's cafe has a 50's
 ROCKETSHIP look.",

before [; Enter:
print "With an impressive mixture of hurry and nonchalance

you step into the open cafe.^";
PlayerTo(cafe);
return true;

],
has enterable proper;

NOTE: although the text of our guide calls Benny’s establishment a “café” –
note the acute “e” – the game itself simplifies this to “cafe”. We do this for
clarity, not because Inform doesn’t support accented characters. The Inform
Designer’s Manual explains in detail how to display these characters in
“§1.11 How text is printed” and provides the whole Z-Machine character set in
Table 2. In our case, we could have displayed this:

The town's favourite for a quick snack, Benny's café has a 50's ROCKETSHIP look.

by defining the description property as any of these:

description
"The town's favourite for a quick snack, Benny's caf@'e has a 50's
 ROCKETSHIP look.",

description
"The town's favourite for a quick snack, Benny's caf@@170 has a 50's
 ROCKETSHIP look.",

T
Y
P
E

T
Y
P
E

10 • CAPTAIN FATE: TAKE 1

112

description
"The town's favourite for a quick snack, Benny's caf@{E9} has a 50's
 ROCKETSHIP look.",

However, all three forms are harder to read than the vanilla “cafe”, so we’ve
opted for the simple life.

Unlike the sidewalk object, we offer more than a mere description. Since the
player may try ENTER CAFE as a reasonable way of access – which would have
confused the interpreter immensely – we take the opportunity of making this
object also enterable, and we cheat a little. The attribute enterable has permitted
the verb ENTER to be applied to this object, but this is not a container; we want
the player to be sent into the real café room instead. The before property handles
this, intercepting the action, displaying a message and teleporting the player into
the café. We return true to inform the interpreter that we have taken care of the
Enter action ourselves, so it can stop right there.

As a final detail, note that we now have two ways of going into the café: the n_to
property of the street room and the Enter action of the outside_of_cafe object. A
perfectionist might point out that it would be neater to handle the actual
movement of the player in just one place of our code, because this helps clarity.
To achieve this, we redirect the street’s n_to property thus:

n_to [; <<Enter outside_of_cafe>>;],

You may think that this is unnecessary madness, but a word to the wise: in a
large game, you want action handling going on just in one place when possible,
because it will help you to keep track of where things are a-happening if
something goes ploof (as, believe us, it will; see “Debugging your game” on
page 173). You don’t need to be a perfectionist, just cautious.

A booth in this kind of situation is an open invitation for the player to step inside
and try to change into Captain Fate’s costume. We won’t let this happen – the
player isn’t Clark Kent, after all; later we’ll explain how we forbid this action –
and that will force the player to go inside the café, looking for a discreet place to
disrobe; but first, let’s freeze John Covarth outside Benny’s and reflect about a
fundamental truth.

A hero is not an ordinary person

Which is to say, normal actions won’t be the same for him.

As you have probably inferred from the previous chapters, some of the library’s
standard defined actions are less important than others in making the game
advance towards one of its conclusions. The library defines PRAY and SING, for
instance, which are of little consequence in a normal gaming situation; each
displays an all-purpose message, sufficiently non-committal, and that’s it. Of
course, if your game includes a magic portal that will reveal itself only if the
player lets rip with a snatch of Wagner, you may intercept the Sing action in a

T
Y
P
E

10 • CAPTAIN FATE: TAKE 1

113

before property and alter its default, pretty useless behaviour. If not, it’s “Your
singing is abominable” for you.

All actions, useful or not, have a stock of messages associated with them (the
messages are held in the english.h library file and listed in Appendix 4 of the
Inform Designer’s Manual). We have already seen one way of altering the player
character’s description – “As good looking as ever” – in “William Tell”, but the
other defaults may also be redefined to suit your tastes and circumstantial needs.

John Covarth, aka Captain Fate, could happily settle for most of these default
messages, but we deem it worthwhile to give him some customised responses. If
nothing else, this adds to the general atmosphere, a nicety that many players
regard as important. For this mission, we make use of the LibraryMessages object.

Include "Parser";

Object LibraryMessages ! must be defined between Parser and VerbLib
with before [;

Buy: "Petty commerce has rarely interested you.";
Dig: "Your keen senses detect NOTHING underground worth your

 immediate attention.";
Pray: "You won't need to bother almighty DIVINITIES to save

 the day.";
Sing: "Alas! That is not one of your many superpowers.";
Sleep: "A hero is ALWAYS on the watch.";
Sorry: "Captain FATE has no time for apologies, only for

 ACTION.";
Strong: "An unlikely vocabulary for a HERO like you.";
Swim: "You quickly turn all your ATTENTION towards locating a

 suitable place to EXERCISE your superior strokes,
 but alas! you find none.";

Miscellany:
if (lm_n == 19)

if (clothes has worn)
"In your secret identity's outfit, you manage most
 efficaciously to look like a two-cent loser, a
 good-for-nothing wimp.";

else
"Now that you are wearing your costume, you project
 the image of power UNBOUND, of ballooned,
 multicoloured MUSCLE, of DASHING yet MODEST chic.";

if (lm_n == 38)
"That's not a verb you need to SUCCESSFULLY save the
 day.";

if (lm_n == 39)
"That's not something you need to refer to in order to
 SAVE the day.";

];

Include "VerbLib";

If you provide it, the LibraryMessages object must be defined between the inclusion
of Parser and VerbLib (it won’t work otherwise and you’ll get a compiler error).
The object contains a single property – before – which intercepts display of the
default messages that you want to change. An attempt to SING, for example, will
now result in “Alas! That is not one of your many superpowers” being displayed.

T
Y
P
E

10 • CAPTAIN FATE: TAKE 1

114

In addition to such verb-specific responses, the library defines other messages not
directly associated with an action, like the default response when a verb is
unrecognised, or if you refer to an object which is not in scope, or indeed many
other things. Most of these messages can be accessed through the Miscellany
entry, which has a numbered list of responses. The variable lm_n holds the current
value of the number of the message to be displayed, so you can change the
default with a test like this:

if (lm_n == 39)
"That's not something you need to refer to in order to SAVE the day.";

where 39 is the number for the standard message “That’s not something you need
to refer to in the course of this game” – displayed when the player mentions a
noun which is listed in a room’s name property, as we did for the street.

Not surprisingly, the default message for self-examination: “As good looking as
ever” is a Miscellany entry – it’s number 19 – so we can change it through the
LibraryMessages object instead of, as before, assigning a new string to the
player.description property. In our game, the description of the player character
has two states: with street clothes as John Covarth and with the super-hero outfit
as Captain Fate; hence the if (clothes has worn) clause.

This discussion of changing our hero’s appearance shows that there are different
ways of achieving the same result, which is a common situation while designing
a game. Problems may be approached from different angles; why use one
technique and not another? Usually, the context tips the balance in favour of one
solution, though it might happen that you opt for the not-so-hot approach for
some overriding reason. Don’t feel discouraged; choices like this become more
common (and easier) as your experience grows.

NOTE: going back to our example, an alternative approach would be to set
the variable player.description in the Initialise routine (as we did with
“William Tell”) to the “ordinary clothes” string, and then later change it as
the need arises. It is a variable, after all, and you can alter its value with
another statement like player.description = whatever new look anywhere in
your code. This alternative solution might be better if we intended changing
the description of the player many times through the game. Since we plan to
have only two states, the LibraryMessages approach will do just fine.

A final warning: as we explained when extending the standard verb grammars,
you could edit the appropriate library file and change all the default messages, but
that wouldn’t be a sound practice, because your library file will probably not be
right for the next game. Use of the LibraryMessages object is strongly advised.

If you’re typing in the game, you’ll probably want to read the brief section on
“Compile-as-you-go” on page 227 prior to performing a test compile. Once
everything’s correct, it’s time that our hero entered that enticing café.

11 • CAPTAIN FATE: TAKE 2

115

11 • Captain Fate: take 2

U was a usurer, a miserable elf;
V was a vintner, who drank all himself.

iewed from the inside, Benny’s café is warm and welcoming, and
packed with lunchtime customers. We’ll try to conjure up some
appropriate images, but the main focus of the room isn’t the decor:
it’s the door leading to the toilet – and, perhaps, privacy?

A homely atmosphere

Benny’s café is populated with customers enjoying their lunch, so it won’t be a
good place to change identities. However, the toilet to the north looks promising,
though Benny has strict rules about its use and the door seems to be locked.

CULTURAL NOTE: not for the first time, this guide betrays its origins. In
European countries the word “toilet” often refers not only to the white
porcelain artefact, but also to the room in which it can be found (also, a
“bathroom” is for taking a bath, a “restroom” for taking a rest). Bear with us
on this; the dual usage becomes important a little later on.

We define the café room in simple form:

Room cafe "Inside Benny's cafe"
with description

"Benny's offers the FINEST selection of pastries and
 sandwiches. Customers clog the counter, where Benny himself
 manages to serve, cook and charge without missing a step. At
 the north side of the cafe you can see a red door connecting
 with the toilet.",
s_to street,
n_to toilet_door;

We’ll elaborate on the last line (n_to toilet_door) later, when we define the door
object which lies between the café and the toilet.

We’ve mentioned a counter:

Appliance counter "counter" cafe
with name 'counter' 'bar',

article "the",
description

"The counter is made of an astonishing ALLOY of metals, CRUMB- &
 SPILL-RESISTANT and EASY to clean. Customers enjoy their snacks
 with UTTER tranquility, safe in the notion that the counter can
 take it all.",

has supporter;

And some customers. These are treated as NPCs, reacting to our hero’s
performance.

T
Y
P
E

11 • CAPTAIN FATE: TAKE 2

116

Object customers "customers" cafe
with name 'customers' 'people' 'customer' 'men' 'women',

description [;
if (costume has worn)

"Most seem to be concentrating on their food, but some do
 look at you quite blatantly. Must be the MIND-BEFUDDLING
 colours of your costume.";

else
"A group of HELPLESS and UNSUSPECTING mortals, the kind
 Captain FATE swore to DEFEND the day his parents choked on a
 DEVIOUS slice of RASPBERRY PIE.";

],
life [;

Ask,Tell,Answer:
if (costume has worn)

"People seem to MISTRUST the look of your FABULOUS
 costume.";

else
"As John Covarth, you attract LESS interest than Benny's
 food.";

Kiss:
"There's no telling what sorts of MUTANT bacteria these
 STRANGERS may be carrying around.";

Attack:
"Mindless massacre of civilians is the qualification for
 VILLAINS. You are SUPPOSED to protect the likes of these
 people.";

],
orders [;

"These people don't appear to be of the cooperative sort.";
],
number_of_comments 0, ! for counting the customer comments
daemon [;

if (location == cafe && random(2) == 1) {
self.number_of_comments = self.number_of_comments + 1;
switch (self.number_of_comments) {

1: "^~Didn't know there was a circus in town,~ comments
 one customer to another. ~Seems like the clowns have
 the day off.~";

2: "^~These fashion designers don't know what to do to
 show off,~ snorts a fat gentleman, looking your way.
 Those within earshot try to conceal their smiles.";

3: "^~Must be carnival again,~ says a man to his wife,
 who giggles, stealing a peek at you.
 ~Time sure flies.~";

4: "^~Bad thing about big towns~, comments someone to
 his table companion, ~is you get the damnedest bugs
 coming out from toilets.~";

5: "^~I sure WISH I could go to work in my pyjamas,~
 says a girl in an office suit to some colleagues.
 ~It looks SO comfortable.~";

default: StopDaemon(self);
}

}
],

has scenery animate pluralname;

Let’s go step by step. Our hero enters the café dressed as John Covarth, but will
eventually manage to change clothes in the toilet, and he’ll have to cross back

T
Y
P
E

11 • CAPTAIN FATE: TAKE 2

117

through the café to reach the street and win the game. The customers’ description
takes into consideration which outfit the player character is wearing.

In “William Tell” we’ve seen a brief manifestation of the life property, but here
we’ll extend it a little. As we explained, life lets you intercept those actions
particular to animate objects. Here we trap Attack and Kiss to offer some
customised messages for these actions when applied to the customers. Also, we
avoid conversation by intercepting Ask, Tell and Answer in order just to produce a
message which depends on the player character’s attire.

One other feature of animate objects is the possibility of giving them orders: BILL,
SHAKE THE SPEAR or ANNIE, GET YOUR GUN. These actions are dealt with
in the orders property and, as with the life property, the embedded routine can
become quite complex if you want your NPCs to behave in an interesting way.
In this case, we don’t need the customers to perform tasks for us, so instead we
provide a simple rejection message, just in case the player tries to order people
around.

Which leaves us with the daemon bit. A daemon is a property normally used to
perform some timed or repetitive action without the need of the player’s direct
interaction; for example, machines which work by themselves, animals that
move on their own, or people going about their business. More powerfully, a
daemon may take notice of the player’s decisions at a particular moment,
allowing for some interactive behaviour; this is, however, an advanced feature
that we won’t use in this example. A daemon gets a chance of doing something
at the end of every turn, typically to (or with) the object to which it’s associated.
In our example, the daemon triggers some sneers and nasty comments from the
customers once our hero comes out of the toilet dressed in Captain Fate’s
costume.

To code a daemon, you need to do three things:

1. First, define a daemon property in the object’s body; the value of the property
is always an embedded routine.

2. However, daemons do nothing until you activate them. This is easily
achieved with the call StartDaemon(obj_id), which may happen anywhere (if
you want some object’s daemon to be active from the beginning of the game,
you can make the call in your Initialise routine).

3. Once the daemon has finished its mission (if ever) you may stop it with the
call StopDaemon(obj_id).

How does our particular daemon work? We want the customers to make snarky
remarks once they see the costumed Captain, but not on a completely
predictable basis.

if (random(2) == 1) ...

11 • CAPTAIN FATE: TAKE 2

118

random is an Inform routine used to generate random numbers or to choose
randomly between given choices; in the form random(expression) it returns a
random number between 1 and expression inclusive. So our condition is actually
stating: if a random choice between 1 and 2 happens to be 1 then perform some
action. Remember that a daemon is run once at the end of every turn, so the
condition is trying to squeeze a comment from a customer roughly once every
other turn.

Next, we proceed as we have already seen in “William Tell”, with a switch
statement to order the comments in a controlled sequence by cunning use of a
customised local property, number_of_comments. We have written just five messages
(could have been one or a hundred) and then we reach the default case, which is
a good place to stop the daemon, since we have no more customers’ witticisms
to display.

Ah, but when does the daemon start functioning? Well, as soon as our protagonist
comes out of the toilet dressed in his multicoloured super-hero pyjamas. Since we
want to minimise the possible game states, we’ll make some general rules to
avoid trouble: (a) players will be able to change only in the toilet; (b) we won’t
let players change back into street clothes; and (c) once players manage to step
into the street thus dressed, the game is won. So, we can safely assume that if
players enter the café in their Captain’s outfit, they’ll be coming from the toilet.
As a consequence of all this, we can change the café room description to:

Room cafe "Inside Benny's cafe"
with description [;

print "Benny's offers the FINEST selection of pastries and
sandwiches. Customers clog the counter, where Benny himself
manages to serve, cook and charge without missing a step. At
the north side of the cafe you can see a red door connecting
with the toilet.";

if (costume has worn && self.first_time_out == false) {
self.first_time_out = true;
StartDaemon(customers);
print "^^Nearby customers glance at your costume with open

curiosity.";
}
new_line;

],
first_time_out false, ! Captain Fate's first appearance?
...

This routine always displays the first string “Benny’s offers the finest...” and then
checks whether the player character is wearing the costume, in which case it
starts the daemon of the customers object and displays another message:
“^^Nearby customers...”. The use of the local first_time_out property ensures
that the condition is true only once, so the statement block attached to it runs also
once. Finally, we find the new_line statement. This just outputs a carriage return
at the end of our routine – in fact, it works exactly the same as print "^"; since we
have two print statements and one of them will be displayed only once, the
carriage return tidies the text layout for both situations:

T
Y
P
E

11 • CAPTAIN FATE: TAKE 2

119

Inside Benny's cafe
Benny's offers the FINEST selection of pastries and sandwiches. Customers clog
the counter, where Benny himself manages to serve, cook and charge without
missing a step. At the north side of the cafe you can see a red door connecting
with the toilet. <- NEW_LINE PRINTS HERE...

>

Inside Benny's cafe
Benny's offers the FINEST selection of pastries and sandwiches. Customers clog
the counter, where Benny himself manages to serve, cook and charge without
missing a step. At the north side of the cafe you can see a red door connecting
with the toilet.

Nearby customers glance at your costume with open curiosity. <- ...AND HERE

>

We’ve finished with the customers in the café. Now, we have the toilet to the
north which, for reasons of gameplay and decency, is protected by a door.

A door to adore

Door objects require some specific properties and attributes. Let’s first code a
simple door:

Object toilet_door "toilet door" cafe
with name 'red' 'toilet' 'door',

description
"A red door with the unequivocal black man-woman
 silhouettes marking the entrance to hygienic facilities.
 There is a scribbled note stuck on its surface.",

door_dir n_to,
door_to toilet,
with_key toilet_key,

has scenery door openable lockable locked;

We find this door in the café. We must specify the direction in which the door
leads and, as we have mentioned in the café’s description, that would be to the
north. That’s what the door_dir property is for, and in this case it takes the value
of the north direction property n_to. Then we must tell Inform the identity of the
room to be found behind the door, hence the door_to property, which takes the
value of the toilet room – to be defined later. Remember the café’s connection to
the north, n_to toilet_door? Thanks to it, Inform will know that the door is in the
way, and thanks to the door_to property, what lies beyond.

Doors must have the attribute door, but beyond that we have a stock of options to
help us define exactly what kind of door we are dealing with. As for containers,
doors can be openable (which activates the verbs OPEN and CLOSE so that they
can be applied to this object) and, since by default they are closed, you can give
them the attribute open if you wish otherwise. Additionally, doors can be lockable
(which sets up the LOCK/UNLOCK verbs) and you can make them locked to
override their default unlocked status. The verbs LOCK and UNLOCK are

11 • CAPTAIN FATE: TAKE 2

120

expecting some kind of key object to operate the door. This must be defined
using the with_key property, whose value should be the internal ID of the key; in
our example, the soon-to-be-defined toilet_key. If you don’t supply this property,
players won’t be able to lock or unlock the door.

This simple door definition has one problem, namely, that it exists only in the
café room. If you wish the door to be present also from the toilet side, you can
either (a) define another door to be found in the toilet room, or (b) make this one
a two-sided door.

Solution (a) seems superficially straightforward, but then you have the problem
of keeping the states of the two doors – open/closed, locked/unlocked – in synch.
In this scenario, where you can access the toilet only through this door, that
wouldn’t be too complicated, since you could leave the door object in the café
room opened all the time, regardless of what players do with the door object in
the toilet room and vice versa – they are never going to see them at the same
time. In general terms, though, such inconsistencies lead to problems; solution
(a) is best ignored for most purposes.

Solution (b) is better, since you have only one door object to deal with and its
possible states affect both sides. However, the coding gets a little bit complicated
and you’ll have to define routines for most properties:

Object toilet_door "toilet door"
with name 'red' 'toilet' 'door',

description [;
if (location == cafe)

"A red door with the unequivocal black man-woman silhouettes
 marking the entrance to hygienic facilities. There is a
 scribbled note stuck on its surface.";

else
"A red door with no OUTSTANDING features.";

],
found_in cafe toilet,
door_dir [;

if (location == cafe) return n_to;
else return s_to;

],
door_to [;

if (location == cafe) return toilet;
else return cafe;

],
with_key toilet_key,

has scenery door openable lockable locked;

First of all, the door now needs a found_in property, since it’s going to be located
both in the café and the toilet. The description checks which side of the door we
are looking at – testing the current value of the variable location, which holds the
room the player is in – because we have a scribbled note stuck on one side, but
not on the other. And the door_dir and door_to properties must use the same trick,
because we travel north from the café into the toilet, but south from the toilet into
the café.

T
Y
P
E

11 • CAPTAIN FATE: TAKE 2

121

Right now, the game will display “the toilet door” every time it needs to refer to
this object. It would be nice if we could somehow get the game to distinguish
between “the door to the toilet” and “the door to the cafe”, depending on the side
we are facing. For this, a short_name property is the thing. We have already talked
about the external name defined as part of an object’s header information:

Object toilet_door "toilet door"

That “toilet door” will be the name displayed by the game at run-time to refer to
the door. With identical effect, this could also have been coded thus:

Object toilet_door
with short_name "toilet door",

short_name is a property that supplies the external name of an object, either as a
string or an embedded routine. Normally, objects retain the same external name
throughout the game – and the header information method is perfect in that case
– but if it needs to change, it’s easy to write a routine as the value of short_name:

Object toilet_door
with name 'red' 'toilet' 'door',

short_name [;
if (location == cafe) print "door to the toilet";
else print "door to the cafe";
return true;

],
description

...

Notice the return true at the end of the routine. You’ll recall that the standard
rule says “return false to carry on, true to take over and stop normal execution”.
In the case of short_name, “carry on” means “and now display the external name
from the header information”, which is sometimes handy; for instance, you could
write a short_name routine to prefix an object’s external name with one of a range
of adjectives – perhaps a shining/flickering/fading/useless lantern.

NOTE: what’s displayed if there isn’t an external name in an object’s header?
If you’ve read the section “Compile-as-you-go” on page 208, you’ll recall that
the interpreter simply uses the internal identifier within parentheses; that is,
with no external name and no short_name property, we might see:

You open the (toilet_door).

And the same principle applies if we were mistakenly to return false from
this short_name routine: we would get, first, the result of our print statement,
and then the standard rules would display the internal ID:

You open the door to the toilet(toilet_door).

Doors can get more complicated than this (no, please, don’t throw our guide out
of the window). Here comes some optional deluxe coding to make the door
object a bit friendlier in game play, so you can skip it if you foresee headaches.

T
Y
P
E

11 • CAPTAIN FATE: TAKE 2

122

Our door now behaves nicely at run-time. It can be locked and unlocked if the
player character has the right key; it can be opened and closed. A sequence of
commands to go into the toilet and lock the door behind you would be:
UNLOCK DOOR WITH KEY, OPEN DOOR, GO NORTH, CLOSE DOOR,
LOCK DOOR WITH KEY. After we are finished, let’s go back to the café:
UNLOCK DOOR WITH KEY, OPEN DOOR, SOUTH. If the player is of the
fastidious kind: CLOSE DOOR, LOCK DOOR WITH KEY. This game features
only one door, but if it had three or four of them, players would grow restless (at
the very least) if they needed to type so many commands just to go through a
door. This is the kind of thing reportedly considered as poor design, because the
game is suddenly slowed down to get over a simple action which involves no
secrets or surprises. How exciting can the crossing of an ordinary door be, after
all?

If a few lines of code can make the life of the player easier, it’s worth a shot. Let’s
provide a few improvements to our toilet door in before and after properties:

before [ks;
Open:

if (self hasnt locked || toilet_key notin player)
return false;

ks = keep_silent; keep_silent = true;
<Unlock self toilet_key>; keep_silent = ks;
return true;

Lock:
if (self hasnt open) return false;
print "(first closing ", (the) self, ")^";
ks = keep_silent; keep_silent = true;
<Close self>; keep_silent = ks;
return false;

],
after [ks;

Unlock:
if (self has locked) return false;
print "You unlock ", (the) self, " and open it.^";
ks = keep_silent; keep_silent = true;
<Open self>; keep_silent = ks;
return true;

],

The basic idea here is to let the player who holds the key perform just one action
to both unlock and open the door (and, conversely, to close and lock it). The
relevant actions are Unlock and Open, and Lock (Close is not necessary; if players just
close the door we shouldn’t assume that they want to lock it as well).

• Open: if the door isn’t locked or the player doesn’t hold the key, keep going
with the default Open action defined by the library. That leaves a locked door
and a player holding the key, so we redirect processing to the Unlock action,
giving as arguments the door (self) and the toilet key. Since we are using
single angle-brackets <...>, the action resumes after the unlocking is done
(note that the Unlock action also takes care of opening the door). Finally, we
return true to stop the library from trying to open the door by itself.

T
Y
P
E

11 • CAPTAIN FATE: TAKE 2

123

• Lock: if the door is already closed, keep going with the standard library Lock
action. If not, tell players that we are closing the door for them, redirect the
action briefly to actually close it, and then return false to let the Lock action
proceed as before.

• Unlock: we place this action in the after property, so (let’s hope) the Unlock
action has already happened. If the door is still locked, something went
wrong, so we return false to display the standard message for an unsuccessful
unlocking. Otherwise, the door is now unlocked, so we inform the player that
we are opening the door and redirect the action to actually open it, returning
true to suppress the standard message.

In all processes there is a library variable called keep_silent, which can be either
false (the normal state) or true; when true, the interpreter does not display the
associated message of an action in progress, so we can avoid things like:

>OPEN DOOR
You open the door to the toilet.
You unlock the door to the toilet and open it.

Although we want to set keep_silent to true for the duration of our extra
processing, we need to reset it afterwards. In a case like this, good design practice
is to preserve its initial value (which was probably false, but you should avoid
risky assumptions); we use a local variable ks to remember that initial setting so
that we can safely restore it afterwards. You’ll remember that a local variable in
a standalone routine is declared between the routine’s name and the semicolon:

[BeenToBefore this_room;

In exactly the same way, a local variable in an embedded routine is declared
between the [starting marker of the routine and the semicolon:

before [ks;

You can declare up to fifteen variables this way – just separated by spaces –
which are usable only within the embedded routine. When we assign it thus:

ks = keep_silent;

we are actually making ks equal to whatever value keep_silent has (either true or
false; we actually don’t care). We then set keep_silent to true, make the desired
silent actions, and we assign:

keep_silent = ks;

which restores the value originally stored in ks to keep_silent. The effect is that
we manage to leave it as it was before we tampered with it.

Well, that’s about everything about doors. Everything? Well, no, not really; any
object can grow as complex as your imagination allows, but we’ll drop the subject
here. If you care to see more sophisticated doors, check Exercises 3 and 4 in the
Inform Designer’s Manual, where an obliging door opens and unlocks by itself if the
player simply walks in its direction.

11 • CAPTAIN FATE: TAKE 2

124

So far, we have the player in front of a locked door leading to the toilet. A dead
end? No, the description mentions a scribbled note on its surface. This one
should offer no problem:

Object "scribbled note" cafe
with name 'scribbled' 'note',

description [;
if (self.read_once == false) {

self.read_once = true;
"You apply your ENHANCED ULTRAFREQUENCY vision to the note
 and squint in concentration, giving up only when you see the
 borders of the note begin to blacken under the incredible
 intensity of your burning stare. You reflect once more how
 helpful it would've been if you'd ever learnt to read.
 ^^A kind old lady passes by and explains:
 ~You have to ask Benny for the key, at the counter.~^^
 You turn quickly and begin, ~Oh, I KNOW that, but...~^^
 ~My pleasure, son,~ says the lady, as she exits the cafe.";

}
else

"The scorched undecipherable note holds no SECRETS from
 you NOW! Ha!";

],
read_once false, ! has the player read the note once?
before [; Take:

"No reason to start collecting UNDECIPHERABLE notes.";
],

has scenery;

Just notice how we change the description after the first time the player examines
the note, using the local property read_once created just for this purpose. We don’t
want the player to walk off with the note, so we intercept the Take action and
display something more in character than the default message for scenery objects:
“That’s hardly portable”.

We’ve talked a lot about the toilet key; it seems about time to code it. Originally,
the key is in Benny’s possession, and the player will have to ask for it, just as the
note explains. Although we’ll define Benny in detail throughout the next chapter,
here we present a basic definition, largely so that the key has a parent object.

Object benny "Benny" cafe
with name 'benny',

description
"A deceptively FAT man of uncanny agility, Benny entertains his
 customers crushing coconuts against his forehead when the mood
 strikes him.",

has scenery animate male proper transparent;

T
Y
P
E

T
Y
P
E

11 • CAPTAIN FATE: TAKE 2

125

Object toilet_key "toilet key" benny
with name 'toilet' 'key',

article "the",
invent [;

if (clothes has worn) print "the CRUCIAL key";
else print "the used and IRRELEVANT key";
return true;

],
description

"Your SUPRA PERCEPTIVE senses detect nothing of consequence
 about the toilet key.",

before [;
if (self in benny)

"You SCAN your surroundings with ENHANCED AWARENESS,
 but fail to detect any key.";

];

While Benny has the key, there’s logically no way to examine it (or perform any
other action involving it), but we want to prevent the interpreter from objecting
that “You can’t see any such thing”. We’ve made the toilet_key a child of the
benny object, and you can see that Benny’s got a transparent attribute; this means
that the key is in scope, and enables the player to refer to it without the
interpreter complaining. Because Benny also has an animate attribute, the
interpreter would normally intercept a TAKE KEY action with “That seems to
belong to Benny”; however, the same wouldn’t apply to other commands like
TOUCH KEY and TASTE KEY. So, to prevent any interaction with the key
while it’s in Benny’s pockets, we define a before property.

before [;
if (self in benny)

"You SCAN your surroundings with ENHANCED AWARENESS,
 but fail to detect any key.";

];

All of the before properties that we’ve so far created have contained one or more
labels specifying the actions which they are to intercept; you’ll remember that in
“William Tell” we introduced the default action (see “A class for props” on
page 66) to mean “any value not already catered for”. Here, though, things are
simpler: because we wish to intercept everything we can dispense with the labels
altogether; our code will then be executed at the start of every action directed at
the key. If it’s still in Benny’s possession, we display a polite refusal; otherwise,
the action continues unhindered.

Another small innovation here: the invent library property (we didn’t make it up)
which enables you to control how objects appear in inventory listings, overriding
the default. Left to itself, the interpreter simply displays the object’s external
name, preceded either by a standard article like “a” or “some”, or one specifically
defined in the object’s article property. Here we replace “the toilet key” with one
of two more helpful descriptions, making it a most valuable object in the eyes of
John Covarth, and something to be despised haughtily by Captain Fate once it’s
of no further use to him.

T
Y
P
E

11 • CAPTAIN FATE: TAKE 2

126

When we had players in the street, we faced the problem that they might choose
to examine the café from the outside. While it’s unlikely that they’ll try to
examine the toilet room from the outside, it takes very little effort to offer a
sensible output just in case:

Object outside_of_toilet "toilet" cafe
with name 'toilet' 'bath' 'rest' 'room' 'bathroom' 'restroom',

before [;
Enter:

if (toilet_door has open) {
PlayerTo(toilet);
return true;

}
else

"Your SUPERB deductive mind detects that the DOOR is
 CLOSED.";

Examine:
if (toilet_door has open)

"A brilliant thought flashes through your SUPERLATIVE
 brain: detailed examination of the toilet would be
 EXTREMELY facilitated if you entered it.";

else
"With a TREMENDOUS effort of will, you summon your
 unfathomable ASTRAL VISION and project it FORWARD
 towards the closed door... until you remember that it's
 Dr Mystere who's the one with mystic powers.";

Open: <<Open toilet_door>>;
Close: <<Close toilet_door>>;
Take,Push,Pull: "That would be PART of the building.";

],
has scenery openable enterable;

As with the outside_of_cafe object, we intercept an Enter action, to teleport
players into the toilet room if they type ENTER TOILET (or to display a refusal
if the toilet door is closed). Players may try to EXAMINE TOILET; they’ll get a
different message if the door is open – we invite them to enter it – or if it’s closed.
OPEN TOILET and CLOSE TOILET inputs are redirected to Open and Close
actions for the toilet door; remember that the double angle-brackets imply a
return true, so that the action stops there and the interpreter does not attempt to
Open or Close the outside_of_toilet object itself after it has dealt with the door.

You’re right: the toilet looms large in this game (we blame it on early maternal
influences). We’ve introduced an ambiguity problem with the outside_of_toilet
object, and we’ll need some help in fixing it.

T
Y
P
E

12 • CAPTAIN FATE: TAKE 3

127

12 • Captain Fate: take 3

W was a watchman, and guarded the door;
X was expensive, and so became poor.

e’ve given ourselves an interesting challenge by overusing that
convenient word “toilet”, and here we show you how we resolve
the ambiguities that have been introduced. Also, it’s time for the
eponymous owner of Benny’s café to be developed in full.

Too many toilets

If you check the name properties of the toilet door, the toilet key and the toilet
room, you’ll see that the dictionary word 'toilet' occurs in all of them. There
won’t be any problems if players mention the words DOOR or KEY, but we
reach a strange impasse should they try to perform some action with just the
word TOILET. The interpreter has to think fast: is the player talking about the
key? About the door? Or about the toilet? Unable to decide, it asks: “Which do
you mean, the door to the toilet, the toilet key or the toilet?”

And guess what? Players will never be able to refer to the toilet object (unless
they type BATH ROOM or REST ROOM, not an obvious choice since we
haven’t used those phrases anywhere visible). If the player answers TOILET the
parser will still have three objects with that dictionary word as a possible name,
so it will ask again, and again – until we give it some dictionary word which is not
ambiguous. A human reader would be able to understand that the word TOILET
alone refers to the room, but the interpreter won’t – unless we help it a little.

We could work around this problem in more than one way, but we’ll take this
opportunity of demonstrating the use of a third-party library package.

When experienced designers find a problem which is not easily solvable, they
may come up with a smart solution and then consider that others could benefit
from the effort. The product of this generosity takes the form of a library
extension: the solution neatly packaged as a file that other designers can
incorporate into their source code. These files can be found in the IF Archive: go
to http://www.ifarchive.org/indexes/if-archive.html and then select “.../infocom”,
“.../compilers”, “.../inform6”, “.../library”, and “.../contributions”. All of these
files contain Inform code. To use a library extension (also known as a library
contribution), you should download it and read the instructions (usually
embedded as comments in the file, but occasionally supplied separately) to
discover what to do next. Normally, you Include it (as we have already done with
Parser, VerbLib and Grammar), but often there are rules about where exactly this
Include should be placed in your source code. It is not unusual to find other
suggestions and warnings.

12 • CAPTAIN FATE: TAKE 3

128

To help us out of the disambiguation problem with the word TOILET, we are
going to use Neil Cerutti’s extension pname.h, which is designed for situations
precisely like this. First, we follow the link to the IF archive and download the
compressed file pname.zip, which contains two more files: pname.h and pname.txt.
We place these files in the folder where we are currently developing our game
or, if using the environment we proposed in “Tools of the trade” on page 17, in
the Inform\Lib\Contrib folder. The text file offers instructions about installation
and usage. Here we find a warning:

This version of pname.h is recommended for use only with version 6/10 of
the Inform Library.

That’s what we are currently using, so there’s no problem. Most extensions aren’t
this fussy, but pname.h fiddles with some routines at the heart of the standard
library; these may not be identical in other Inform versions.

The introduction explains what pname.h does for you; namely, it lets you avoid
using complicated parse_name routines to disambiguate the player’s input when
the same dictionary word refers to more than one item. A parse_name routine
would have been the solution to our problem before the existence of this file, and
it qualifies as an advanced programming topic, difficult to master on a first
approach. Fortunately, we don’t need to worry. Neil Cerutti explains:

The pname.h package defines a new object property, pname (short for phrase
name), with a similar look and feel to the standard name property: both
contain a list of dictionary words. However, in a pname property the order of
the words is significant, and special operators '.p' '.or' and '.x' enable you
to embed some intelligence into the list. In most cases where the standard
name property isn’t enough, you can now just replace it with a pname property,
rather than write a parse_name property routine.

We’ll soon see how it works. Let’s take a look at the installation instructions:

To incorporate this package into your program, do three things:
1. Add four lines near the head of the program (before you include

Parser.h).

Replace MakeMatch;
Replace Identical;
Replace NounDomain;
Replace TryGivenObject;

2. Include the pname.h header just after you include Parser.h.

Include "Parser";
Include "pname";

3. Add pname properties to those objects which require phrase recognition.

It seems simple enough. So, following steps one and two, we add those Replace...
lines before the inclusion of Parser, and we include pname.h right after it. Replace
tells the compiler that we’re providing replacements for some standard routines.

12 • CAPTAIN FATE: TAKE 3

129

Constant Story "Captain Fate";
Constant Headline

"^A simple Inform example
 ^by Roger Firth and Sonja Kesserich.^";

Release 2; Serial "020827"; ! for keeping track of public releases

Constant MANUAL_PRONOUNS;

Replace MakeMatch; ! required by pname.h
Replace Identical;
Replace NounDomain;
Replace TryGivenObject;

Include "Parser";
Include "pname";
...

Now our source code is ready to benefit from the library package. How does it
work? We have acquired a new property – pname – which can be added to some
of our objects, and which works pretty much like a name property. In fact, it should
be used instead of a name property where we have a disambiguation problem. Let’s
change the relevant lines for the toilet door and the toilet key:

Object toilet_door
with pname '.x' 'red' '.x' 'toilet' 'door',

short_name [;
...

Object toilet_key "toilet key" benny
with pname '.x' 'toilet' 'key',

article "the",
...

while leaving the outside_of_toilet unchanged:

Object outside_of_toilet "toilet" cafe
with name 'toilet' 'bath' 'rest' 'room' 'bathroom' 'restroom',

before [;
...

We are now using a new operator – '.x ' – in our pname word lists. The text file
explains

The first dictionary word to the right of a '.x' operator is interpreted as
optional.

and this makes the dictionary word 'toilet' of lesser importance for these
objects, so that at run-time players could refer to the DOOR or TOILET DOOR
or the KEY or TOILET KEY – but not simply to the TOILET – when referring to
either the door or the key. And, by leaving unchanged the name property of the
outside_of_toilet object – where there is also another 'toilet' entry – the pname
properties will tell the interpreter to discard the key and the door as possible
objects to be considered when players refer just to TOILET. Looking at it in terms
of the English language, we’ve effectively said that “TOILET” is an adjective in
the phrases “TOILET DOOR” and “TOILET KEY”, but a noun when used on its
own to refer to the room.

T
Y
P
E

T
Y
P
E

12 • CAPTAIN FATE: TAKE 3

130

The pname.h package has additional functionality to deal with more complex
phrases, but we don’t need it in our example game. Feel free, however, to read
pname.txt and discover what this fine library extension can do for you: it’s an easy
answer to many a disambiguation headache.

Don’t shoot! I’m only the barman

A lot of the action of the game happens around Benny, and his definition needs
a little care. Let’s explain what we want to happen.

So the door is locked and the player, after discovering what the note stuck on
the toilet door said, will eventually ask Benny for the key. Sadly, Benny
allows use of the toilet only to customers, a remark he’ll make looking
pointedly at the menu board behind him. The player will have to ask for a
coffee first, thereby qualifying as a customer in Benny’s eyes and thus entitled
to make use of the toilet. At last! Rush inside, change into Captain Fate’s
costume and fly away to save the day!

Except that the player neither paid for the coffee, nor returned the toilet key.
Benny will have to stop the player from leaving the café in these circumstances.
To prevent unnecessary complication, there will be a coin near the lavatory,
enough cash to pay for the coffee. And that about sums it all up; pretty simple to
describe – not so simple to code. Remember Benny’s basic definition from the
previous chapter:

Object benny "Benny" cafe
with name 'benny',

description
"A deceptively FAT man of uncanny agility, Benny entertains his
 customers crushing coconuts against his forehead when the mood
 strikes him.",

has scenery animate male proper transparent;

We can now add some complexity, beginning with a life property. In generic
form:

life [;
Give: ... code for giving objects to Benny
Attack: ... code to deal with player's aggressive moves
Kiss: ... code about the player getting tender on Benny
Ask,Tell,Answer: ... code to handle conversation

],

We have seen some of these actions before. We’ll take care of the easier ones:

12 • CAPTAIN FATE: TAKE 3

131

Attack:
if (costume has worn) {

deadflag = 4;
print "Before the horror-stricken eyes of the surrounding

people, you MAGNIFICENTLY jump OVER the counter and
attack Benny with REMARKABLE, albeit NOT sufficient,
speed. Benny receives you with a TREACHEROUS
upper-cut that sends your GRANITE JAW flying through
the cafe.^^
~These guys in pyjamas think they can bully innocent
folk,~ snorts Benny, as the EERIE hands of DARKNESS
engulf your vision and you lose consciousness.";

}
else

"That would be an unlikely act for MEEK John Covarth.";
Kiss: "This is no time for MINDLESS infatuation.";
Ask,Tell,Answer:

"Benny is too busy for idle chit-chat.";

Attacking Benny is not wise. If the player is still dressed as John Covarth, the
game displays a message refusing to use violence by reason of staying in
character as a worthless wimp. However, if Captain Fate attempts the action,
we’ll find that there is more to Benny than meets the eye, and the game is lost.
Kissing and conversation are disallowed by a couple of tailored responses.

The Give action is a bit more complicated, since Benny reacts to certain objects
in a special and significant way. Bear in mind that Benny’s definition needs to
keep track of whether the player has asked for a coffee (thereby becoming a
customer and thus worthy of the key), whether the coffee has been paid for, and
whether the toilet key has been returned. The solution, yet again (this really is a
most useful capability), is more local property variables:

Object benny "Benny" cafe
with name 'benny',

description
"A deceptively FAT man of uncanny agility, Benny entertains his
 customers crushing coconuts against his forehead when the mood
 strikes him.",

coffee_asked_for false, ! has player asked for a coffee?
coffee_not_paid false, ! is Benny waiting to be paid?
key_not_returned false, ! is Benny waiting for the key?
life [;
...

Now we are ready to tackle the Give action of the life property, which deals with
commands like GIVE THE KEY TO BENNY (in a moment, we’ll come to the
Give action of the orders property, which deals with commands like
BENNY, GIVE ME THE KEY):

T
Y
P
E

T
Y
P
E

12 • CAPTAIN FATE: TAKE 3

132

Give: switch (noun) {
clothes:

"You NEED your unpretentious John Covarth clothes.";
costume:

"You NEED your stupendous ACID-PROTECTIVE suit.";
toilet_key:

self.key_not_returned = false;
move toilet_key to benny;
"Benny nods as you ADMIRABLY return his key.";

coin:
remove coin;
self.coffee_not_paid = false;
"With marvellous ILLUSIONIST gestures, you produce the
 coin from the depths of your BULLET-PROOF costume as if
 it had popped out from Benny's ear! People around you
 clap politely. Benny accepts the coin and gives it a
 SUSPICIOUS bite. ~Thank you, sir. Come back anytime,~
 he says.";

}

The Give action in the life property holds the variable noun as the object offered
to the NPC. Remember that we can use the switch statement as shorthand for:

if (noun == costume) { whatever };
if (noun == clothes) { whatever };
...

We won’t let players give away their clothes or their costume (yes, an improbable
action, but you never know). The toilet key and the coin are successfully
transferred. The property key_not_returned will be set to true when we receive the
toilet key from Benny (we have not coded that bit yet), and now, when we give
it back, it’s reset to false. The move statement is in charge of the actual transfer of
the object from the player’s inventory to Benny, and we finally display a
confirmation message. With the coin, we find a new statement: remove. This
extracts the object from the object tree, so that it now has no parent. The effect
is to make it disappear from the game (though you are not destroying the object
permanently – and indeed you could return it to the object tree using the move
statement); as far as the player is concerned, there isn’t a COIN to be found
anywhere. The coffee_not_paid property will be set to true when Benny serves us
the cup of coffee (again, we’ll see that in a moment); now we reset it to false,
which liberates the player from debt. This culminates with the "..."
print-and-return statement, telling the player that the action was successful.

Why move the key to Benny but remove the coin instead? Once players qualify
as customers by ordering a coffee, they will be able to ask for the key and return
it as many times as they like, so it seems sensible to keep the key around. The
coin, however, will be a one-shot. We won’t let players ask for more than one
coffee, to prevent their debt from growing ad infinitum – besides, they came in
here to change, not to indulge in caffeine. Once the coin is paid, it disappears for
good, supposedly into Benny’s greedy pockets. No need to worry about it any
more.

T
Y
P
E

12 • CAPTAIN FATE: TAKE 3

133

The benny object needs also an orders property, just to take care of the player’s
requests for coffee and the key, and to fend off any other demands. The Give
action in an orders property deals with inputs like ASK BENNY FOR THE KEY
or BENNY, GIVE ME THE KEY. The syntax is similar to that of the life
property:

orders [; ! handles ASK BENNY FOR X and BENNY, GIVE ME XXX
Give: switch (noun) {

toilet_key:
if (toilet_key in player)

"But you DO have the key already.";
if (self.coffee_asked_for == true) {

move toilet_key to player;
self.key_not_returned = true;
"Benny tosses the key to the rest rooms on the
 counter, where you grab it with a dextrous and
 precise movement of your HYPER-AGILE hand.";

}
else

"~Toilet is only fer customers,~ he grumbles,
 looking pointedly at a menu board behind him.";

coffee:
if (self.coffee_asked_for == true)

"One coffee should be enough.";
move coffee to counter;
self.coffee_asked_for = true;
self.coffee_not_paid = true;
"With two gracious steps, Benny places his world-famous
 Cappuccino in front of you.";

food:
"Food will take too much time, and you must change NOW.";

menu:
"With only the smallest sigh, Benny nods towards the menu
 on the wall behind him.";

default:
"~I don't think that's on the menu, sir.~";

}
],

• Toilet key: first, we check whether players already have the key or not, and
complain if they do, stopping execution thanks to the implicit return true of
the “...” statement. If players don’t have the key, we proceed to check
whether they’ve asked for a coffee yet, by testing the coffee_asked_for
property. If this is true, they get the key, which means that they have to return
it – the key_not_returned property becomes true – and we display a suitable
message. If this is not true (the else clause, which pairs up with the nearest if
statement) Benny refuses to oblige, mentioning for the first time the menu
board where players will be able to see a picture of a cup of coffee when they
EXAMINE it.

• Coffee: we check whether players have already asked for a coffee, by testing
the coffee_asked_for property, and refuse to serve another one if true. If false,
we place the coffee on the counter, and set the properties coffee_asked_for
and coffee_not_paid to true. The message bit you know about.

T
Y
P
E

12 • CAPTAIN FATE: TAKE 3

134

• Food: we’ll provide an object to deal with all of the delicious comestibles to
be found in the café, specifically those (such as “pastries and sandwiches”)
mentioned in our descriptions. Although that object is not yet defined, we
code ahead to thwart player’s gluttony in case they choose to ask Benny for
food.

• Menu: our default response – “I don’t think that’s on the menu, sir” – isn’t
very appropriate if the player asks for a menu, so we provide a better one.

• Default: this takes care of anything else that the player asks Benny for,
displaying his curt response.

And before you know it, Benny’s object is out of the way; however, don’t
celebrate too soon. There’s still some Benny-related behaviour that, curiously
enough, doesn’t happen in Benny’s object; we’re talking about Benny’s reaction
if the player tries to leave without paying or returning the key. We promised you
that Benny would stop the player, and indeed he will. But where?

We must revisit the café room object:

Room cafe "Inside Benny's cafe"
with description [;

print "Benny's offers the FINEST selection of pastries and
sandwiches. Customers clog the counter, where Benny himself
manages to serve, cook and charge without missing a step. At
the north side of the cafe you can see a red door connecting
with the toilet.";

if (costume has worn && self.first_time_out == false) {
self.first_time_out = true;
StartDaemon(customers);
print "^^Nearby customers glance at your costume with open

curiosity.";
}
new_line;

],
first_time_out false, ! Captain Fate's first appearance?
before [; Go: if (noun ~= s_obj) return false;

if (benny.coffee_not_paid == true ||
benny.key_not_returned == true) {
print "Just as you are stepping into the street, the big hand

of Benny falls on your shoulder.";
if (benny.coffee_not_paid == true &&

benny.key_not_returned == true)
"^^~Hey! You've got my key and haven't paid for the
 coffee. Do I look like a chump?~ You apologise as only a
 HERO knows how to do and return inside.";

if (benny.coffee_not_paid == true)
"^^~Just waidda minute here, Mister,~ he says.
 ~Sneaking out without paying, are you?~ You quickly
 mumble an excuse and go back into the cafe. Benny
 returns to his chores with a mistrusting eye.";

if (benny.key_not_returned == true)
"^^~Just where you think you're going with the toilet
 key?~ he says. ~You a thief?~ As Benny forces you back
 into the cafe, you quickly assure him that it was only
 a STUPEFYING mistake.";

T
Y
P
E

12 • CAPTAIN FATE: TAKE 3

135

}
if (costume has worn) {

deadflag = 5; ! you win!
"You step onto the sidewalk, where the passing pedestrians
 recognise the rainbow EXTRAVAGANZA of Captain FATE's costume
 and cry your name in awe as you JUMP with sensational
 momentum into the BLUE morning skies!";
}

],
s_to street,
n_to toilet_door;

Once again, we find that the solution to a design problem is not necessarily
unique. Remember what we saw when dealing with the player’s description: we
could have assigned a new value to the player.description variable, but opted to
use the LibraryMessages object instead. This is a similar case. The code causing
Benny to intercept the forgetful player could have been added, perhaps, to a
daemon property in Benny’s definition. However, since the action to be intercepted
is always the same one and happens to be a movement action when the player
tries to leave the café room, it is also possible to code it by trapping the Go action
of the room object. Both would have been right, but this is somewhat simpler.

We have added a before property to the room object (albeit a longish one), just
dealing with the Go action. This technique lets you trap the player who is about
to exit a room before the movement actually takes place, a good moment to
interfere if we want to prevent escape. The first line:

if (noun ~= s_obj) return false;

is telling the interpreter that we want to tamper only with southwards movement,
allowing the interpreter to apply normal rules for the other available directions;
the ~= operator stands for “not equal to”. From here on, it’s only conditions and
more conditions. The player may attempt to leave:

• without paying for the coffee and without returning the key,

• having paid for the coffee, but without returning the key,

• having returned the key, but not paid for the coffee, or

• free of sin and accountable for nothing in the eyes of all men (well, in the eye
of Benny, at least).

The first three are covered by the test:

if (benny.coffee_not_paid == true || benny.key_not_returned == true) ...

that is, if either the coffee is not paid for or if the key is not returned. When this
condition is false, it means that both misdemeanours have been avoided and that
the player is free to go. However, when this condition is true, the hand of Benny
falls on the player’s shoulder and then the game displays a different message
according to which fault or faults the player has committed.

12 • CAPTAIN FATE: TAKE 3

136

If the player is free to go, and is wearing the crime-fighting costume, the game is
won. We tell you how that’s reported in the next chapter, where we finish off the
design.

13 • CAPTAIN FATE: THE FINAL CUT

137

13 • Captain Fate: the final cut

Y was a youth, that did not love school;
Z was a zany, a poor harmless fool.

ou’ll probably be pleased to hear that Captain Fate has almost run
his allotted span. There are some minor objects still to be defined
– the toilet, our hero’s clothes, the all-important costume – but first
we need to decorate the café a little more.

Additional catering garnish

We must not forget a couple of tiny details in the café room:

Object food "Benny's snacks" cafe
with name 'food' 'pastry' 'pastries' 'sandwich' 'sandwiches' 'snack'

'snacks' 'doughnut',
before [; "There is no time for FOOD right now.";],

has scenery proper;

Object menu "menu" cafe
with name 'informative' 'menu' 'board' 'picture' 'writing',

description
"The menu board lists Benny's food and drinks, along with their
 prices. Too bad you've never learnt how to read, but luckily
 there is a picture of a big cup of coffee among the
 incomprehensible writing.",

before [; Take:
"The board is mounted on the wall behind Benny. Besides, it's
 useless WRITING.";

]
has scenery;

And a not-so-trivial object:

Object coffee "cup of coffee" benny
with name 'cup' 'of' 'coffee' 'steaming' 'cappuccino'

'cappucino' 'capuccino' 'capucino',
initial "On the counter, the steaming Cappuccino awaits you.",
description [;

if (self in benny)
"The picture on the menu board SURE looks good.";

else
"It smells delicious.";

],
before [;

Take,Drink,Taste:
if (self in benny)

"You should ask Benny for one first.";
else {

move self to benny;
"You pick up the cup and swallow a mouthful. Benny's
 WORLDWIDE REPUTATION is well deserved. Just as you

T
Y
P
E

T
Y
P
E

13 • CAPTAIN FATE: THE FINAL CUT

138

 finish, Benny takes away the empty cup.
 ~That will be one quidbuck, sir.~";

}
Buy:

if (coin in player) <<Give coin benny>>;
else "You have no money.";

Smell:
"If your HYPERACTIVE pituitary glands are to be trusted,
 it's Colombian.";

];

There’s nothing really new in this object (other than that the name property caters
for orthographically challenged players), but notice how we don’t remove it after
the player drinks it. In an apparently absurd whim, the coffee returns to Benny
magically (although this is not information that the player needs to know). Why?
After you remove an object from the game, if the player attempts, say, to
EXAMINE it, the interpreter will impertinently state that “You can’t see any such
thing”. Moreover, if the player asks Benny for a second coffee, once the first one
has been removed, Benny will complain “I don’t think that’s on the menu, sir” –
a blatant lie – which was the default in Benny’s orders property. Since the
removed coffee object does not belong to Benny, it’s not a noun that the player
can ASK Benny FOR. By making it a child of the barman (who has the transparent
attribute set), the coffee is still an object that players can refer to. We ensure that
they don’t get more cups thanks to Benny’s coffee_asked_for property, which will
remain true after the first time.

Toilet or dressing room?

Rather more of the latter, actually, since it’s the only place away from curious
eyes where our hero will be able to metamorphose from weakling into the bane
of all evildoers. And we really don’t want to become, erm, bogged down with
details of the room’s function or plumbing.

There’s not a lot about the toilet room and its contents, though there will be some
tricky side effects:

Room toilet "Unisex toilet"
with description

"A surprisingly CLEAN square room covered with glazed-ceramic
 tiles, featuring little more than a lavatory and a light switch.
 The only exit is south, through the door and into the cafe.",

s_to toilet_door,
has ~light scored;

Appliance lavatory "lavatory" toilet
with name 'lavatory' 'wc' 'toilet' 'loo' 'bowl' 'can' 'john' 'bog',

before [; Examine:
if (coin in self) {

move coin to parent(self);
"The latest user CIVILLY flushed it after use, but failed to
 pick up the VALUABLE coin that fell from his pants.";

}
];

T
Y
P
E

13 • CAPTAIN FATE: THE FINAL CUT

139

Object coin "valuable coin" lavatory
with name 'valuable' 'coin' 'silver' 'quidbuck',

description "It's a genuine SILVER QUIDBUCK.",
before [; Drop:

"Such a valuable coin? Har, har! This must be a demonstration of
 your ULTRA-FLIPPANT jesting!";

],
after [; Take:

"You crouch into the SLEEPING DRAGON position and deftly, with
 PARAMOUNT STEALTH, you pocket the lost coin.";

],
has scored;

We initially place the coin as a child of the lavatory (just so that we can easily
make the if (coin in self) one-time test). Since the lavatory does not have the
transparent attribute set, the coin will be invisible to players until they try to
EXAMINE the lavatory, an action that will move the coin into the toilet room.
Once taken, the coin will remain in the inventory until the player gives it to
Benny, because we trap any Drop actions to help the player to Do the Right Thing.

The lavatory object includes a load of helpful synonyms in its name property,
including our favourite word 'toilet'. That won’t be a problem: the other objects
here which may have TOILET in their names – the key and the door – both use
the pname property to turn their use of 'toilet' into a lower-priority adjective.

See that here we have the only two scored attributes of the game. The player will
be awarded one point for entering the toilet room, and another for finding and
picking up the coin.

You might have noticed that we are forcefully clearing the light attribute,
inherited from the Room class. This will be a windowless space and, to add a touch
of realism, we’ll make the room a dark one, which will enable us to tell you about
Inform’s default behaviour when there’s no light to see by. However, let’s define
first the light switch mentioned in the room’s description to aid players in their
dressing duties.

Appliance light_switch "light switch" toilet
with name 'light' 'switch',

description
"A notorious ACHIEVEMENT of technological SCIENCE, elegant yet
 EASY to use.",

before [; Push:
if (self has on) <<SwitchOff self>>;
else <<SwitchOn self>>;

],
after [;

SwitchOn:
give self light;
"You turn on the light in the toilet.";

SwitchOff:
give self ~light;
"You turn off the light in the toilet.";

],
has switchable ~on;

T
Y
P
E

13 • CAPTAIN FATE: THE FINAL CUT

140

Please notice the appearance of new attributes switchable and on. switchable
enables the object to be turned on and off, and is typical of lanterns, computers,
television sets, radios, and so on. The library automatically extends the
description of these objects by indicating if they are currently on or off:

> X LIGHT SWITCH
A notorious ACHIEVEMENT of technological SCIENCE, elegant yet EASY to use.
The light switch is currently switched on.

Two new actions are ready to use, SwitchOn and SwitchOff. Left to themselves, they
toggle the object’s state between ON and OFF and display a message like:

You switch the brass lantern on.

They also take care of checking if the player fumbled and tried to turn on (or off)
an object which was already on (or off). How does the library know the state of
the object? This is thanks to the on attribute, which is set or cleared automatically
as needed. You can, of course, set or clear it manually like any other attribute,
with the give statement:

give self on;

give self ~on;

and check if a switchable object is on or off with the test:

if (light_switch has on) ...

if (light_switch hasnt on) ...

A switchable object is OFF by default. However, you’ll notice that the has line of
the object definition includes ~on:

has switchable ~on;

Surely that’s saying “not-on”? Surely that’s what would have happened anyway
if the line hadn’t mentioned the attribute at all?

has switchable;

Absolutely true. Adding that ~on attribute has no effect whatsoever on the game
– but nevertheless it’s a good idea. It’s an aide-mémoire, a way of reminding
ourselves that we start with the attribute clear, and that at some point we’ll be
setting it for some purpose. Trust us: it’s worthwhile taking tiny opportunities like
this to help yourself.

Let’s see how our light switch works. We trap the SwitchOn and SwitchOff actions
in the after property (when the switching has successfully taken place) and use
them to give light to the light switch.

Uh, wait. To the light switch? Why not to the toilet room? Well, there’s a reason
and we’ll see it in a minute. For now, just remember that, in order for players to
see their surroundings, you need only one object in a room with the light
attribute set. It doesn’t have to be the room itself (though this is usually
convenient).

13 • CAPTAIN FATE: THE FINAL CUT

141

After setting the light attribute, we display a customised message, to avoid the
default:

You switch the light switch on.

which, given the name of the object, doesn’t read very elegantly. We foresee that
players might try to PUSH SWITCH, so we trap this attempt in a before property
and redirect it to SwitchOn and SwitchOff actions, checking first which one is
needed by testing the on attribute. Finally, we have made the switch a member of
the class Appliance, so that the player doesn’t walk away with it.

NOTE: remember what we said about class inheritance? No matter what you
define in the class, the object’s definition has priority. The class Appliance
defines a response for the Push action, but we override it here with a new
behaviour.

And there was light

So the player walks into the toilet and

Darkness
It is pitch dark, and you can't see a thing.

Oops! No toilet description, no mention of the light switch, nothing. It is
reasonable to think that if we have opened the toilet door to access the toilet,
some light coming from the café room will illuminate our surroundings – at least
until the player decides to close the door. So perhaps it would be a good idea to
append a little code to the door object to account for this. A couple of lines in the
after property will suffice:

after [ks;
Unlock:

if (self has locked) return false;
print "You unlock ", (the) self, " and open it.^";
ks = keep_silent; keep_silent = true;
<Open self>; keep_silent = ks;
return true;

Open: give toilet light;
Close: give toilet ~light;

],

And this is the reason why the light switch didn’t set the light attribute of the
toilet room, but did it to itself. We avoid running into trouble if we let the
open/closed states of the door control the light of the room object, and the on/off
states of the switch control the light of the switch. So it is one shiny light switch.
Fortunately, players are never aware of this glowing artefact.

NOTE: now, could they? Well, if players could TAKE the light switch (which
we have forbidden) and then did INVENTORY, the trick would be given
away, because all objects with the light attribute set are listed as (providing
light).

T
Y
P
E

13 • CAPTAIN FATE: THE FINAL CUT

142

So the player walks into the toilet and

Unisex toilet
A surprisingly CLEAN square room covered with glazed-ceramic tiles, featuring
little more than a lavatory and a light switch. The only exit is south, through
the door and into the cafe.

[Your score has just gone up by one point.]

Better. Now, suppose the player closes the door.

>CLOSE DOOR
You close the door to the cafe.

It is now pitch dark in here!

The player might try then to LOOK:

>L

Darkness
It is pitch dark, and you can't see a thing.

Well, no problem. We have mentioned that there is a light switch. Surely the
player will now try to:

>TURN ON LIGHT SWITCH
You can't see any such thing.

Oops! Things are getting nasty here in the dark. It’s probably time to leave this
place and try another approach:

>OPEN DOOR
You can't see any such thing.

And this illustrates one of the terrible things about darkness in a game. You can’t
see anything; you can do very little indeed. All objects except those in your
inventory are out of scope, unreachable, as if non-existent. Worse, if you DROP
one of the objects you are carrying, it will be swallowed by the dark, never to be
found until there is light to see by.

The player, who is doubtless immersed in the fantasy of the game, will now be a
little annoyed. “I am in a small bathroom and I can’t even reach the door I have
just closed?” The player’s right, of course1. Darkened rooms are one cliché of
traditional games. Usually you move in one direction while looking for treasure
in some underground cave, and suddenly arrive at a pitch black place. It’s good
behaviour of the game to disallow exploration of unknown dark territory, and it’s
a convention to bar passage to players until they return with a light source.

1. We’re alluding here to the Classical concept of mimesis. In an oft-quoted essay from 1996,
Roger Giner-Sorolla wrote: “I see successful fiction as an imitation or ‘mimesis’ of reality,
be it this world’s or an alternate world’s. Well-written fiction leads the reader to
temporarily enter and believe in the reality of that world. A crime against mimesis is any
aspect of an IF game that breaks the coherence of its fictional world as a representation of
reality.”

13 • CAPTAIN FATE: THE FINAL CUT

143

However, if the scenario of the game features, say, the player character’s home,
a little apartment with two rooms, and there’s no light in the kitchen, we could
expect the owner of the house to know how to move around a little, perhaps
groping for the light switch or even going to the refrigerator in the dark.

We are in a similar situation. The inner logic of the game demands that blind
players should be able to open the door and probably operate the light switch
they’ve just encountered. We have been telling you that an object is in scope
when it’s in the same room as the player. Darkness changes that rule. All objects
not directly carried by the player become out of scope.

One of the advantages of an advanced design system like Inform is the flexibility
to change all default behaviours to suit your particular needs. Scope problems are
no different. There is a set of routines and functions to tamper with what’s in
scope when. We’ll see just a tiny example to fix our particular problem. In the
section “Entry point routines” of our game – after the Initialise routine, for
instance – include the following lines:

[InScope person;
if (person == player && location == thedark && real_location == toilet) {

PlaceInScope(light_switch);
PlaceInScope(toilet_door);

}
return false;

];

InScope(actor_obj_id) is an entry point routine that can tamper with the scope
rules for the given actor_obj_id (either the player character or a NPC). We define
it with one variable (which we name as we please; it’s also a good idea to name
variables in an intuitive way to remind us of what they represent), person, and
then we make a complex test to see if the player is actually in the toilet and in the
dark.

We have told you that the library variable location holds the current room that
the player is in. However, when there is no light, the variable location gets
assigned to the value of the special library object thedark. It doesn’t matter if we
have ten dark rooms in our game; location will be equal to thedark in all of them.
There is yet another variable, called real_location, which holds the room the
player is in even when there is no light to see by.

So the test:

if (person == player && location == thedark && real_location == toilet) ...

is stating: if the specified actor is the player character and he finds himself in the
dark and he actually happens to be in the toilet...

Then we make a call to one of the library routines, PlaceInScope(obj_id), which
has a very descriptive name: it places in scope the given object. In our case, we
want both the door and the light switch to be within reach of the player, hence
both additional lines. Finally, we must return false, because we want the normal

13 • CAPTAIN FATE: THE FINAL CUT

144

scope rules for the defined actor – the player – to apply to the rest of the objects
of the game (if we returned true, players would find that they are able to interact
with very little indeed). Now we get a friendlier and more logical response:

Darkness
It is pitch dark, and you can't see a thing.

>TURN ON SWITCH
You turn on the light in the toilet.

Unisex toilet
A surprisingly CLEAN square room covered with glazed-ceramic tiles, featuring
little more than a lavatory and a light switch. The only exit is south, through
the door and into the cafe.

And the same would happen with the door. Notice how the room description
gets displayed after we pass from dark to light; this is the normal library
behaviour.

There is still one final problem which, admittedly, might originate from an
improbable course of action; however, it could be a nuisance. Suppose that the
player enters the toilet, locks the door – which is possible in the dark now that
the door is in scope – and then drops the key. There’s no way to exit the toilet –
because the door is locked and the key has disappeared, engulfed by the darkness
– unless the player thinks to turn on the light switch, thereby placing the key in
scope once more.

Why don’t we add a PlaceInScope(toilet_key) to the above routine? Well, for
starters, the key can be moved around (as opposed to the door or the light switch,
which are fixed items in the toilet room). Suppose the player opens the door of
the toilet, but drops the key in the café, then enters the toilet and closes the door.
The condition is met and the key is placed in scope, when it’s in another room.
Second, this is a simple game with just a few objects, so you can define a rule for
each of them; but in any large game, you might like to be able to refer to objects
in bunches, and make general rules that apply to all (or some) of them.

We need to add code to the InScope routine, telling the game to place in scope all
objects that we drop in the dark, so that we might recover them (maybe going on
all fours and groping a little, but it’s a possible action). We don’t want the player
to have other objects in scope (like the coin, for instance), so it might be good to
have a way of testing if the objects have been touched and carried by the player.
The attribute moved is perfect for this. The library sets it for every object that the
player has picked up at one time in the game; scenery and static objects, and
those we have not yet seen don’t have moved. Here is the reworked InScope routine.
There are a couple of new concepts to look at:

13 • CAPTAIN FATE: THE FINAL CUT

145

[InScope person item;
if (person == player && location == thedark && real_location == toilet) {

PlaceInScope(light_switch);
PlaceInScope(toilet_door);

}
if (person == player && location == thedark)

objectloop (item in parent(player))
if (item has moved) PlaceInScope(item);

return false;
];

We have added one more local variable to the routine, item – again, this is a
variable we have created and named on our own; it is not part of the library. We
make now a new test: if the actor is the player and the location is any dark room,
then perform a certain action. We don’t need to specify the toilet, because we
want this rule to apply to all dark rooms (well, the only dark room in the game is
the toilet, but we are trying to provide a general rule).

objectloop (variable) statement;

is a loop statement, one of the four defined in Inform. A loop statement is a
construct that allows you to run several times through a statement (or a statement
block). objectloop performs the statement once for every object defined in the
(variable). If we were to code:

objectloop (item) statement;

then the statement would be executed once for each object in the game. However,
we want to perform the statement only for those objects whose parent object is
the same as the player’s parent object: that is, for objects in the same room as the
player, so we instead code:

objectloop (item in parent(player)) statement;

What is the actual statement that we’ll repeatedly execute?

if (item has moved)
PlaceInScope(item);

The test: if (item has moved) ensures that PlaceInScope(item) deals only with
objects with the moved attribute set. So: if the player is in the dark, let’s go through
the objects which are in the same room, one at a time. For each of them, check
if it’s an item that the player has at some time carried, in which case, place it in
scope. All dropped objects within the room were carried at one time, so we let
players recollect them even if they can’t see them.

As you see, darkness has its delicate side. If you plan to have dark rooms galore
in your games, bear in mind that you are in for some elaborate code (unless you
let the library carry on with default rules, in which case there won’t be much for
your players to do).

T
Y
P
E

13 • CAPTAIN FATE: THE FINAL CUT

146

Amazing technicolour dreamcoats

This leaves us the clothing items themselves, which will require a few tailored
actions. Let’s see first the ordinary garments of John Covarth:

Object clothes "your clothes"
with name 'ordinary' 'street' 'clothes' 'clothing',

description
"Perfectly ORDINARY-LOOKING street clothes for a NOBODY like
 John Covarth.",

before [;
Disrobe,Change:

switch (location) {
street:

if (player in booth)
"Lacking Superman's super-speed, you realise that
 it would be awkward to change in plain view of
 the passing pedestrians.";

else
"In the middle of the street? That would be a
 PUBLIC SCANDAL, to say nothing of revealing your
 secret identity.";

cafe:
"Benny allows no monkey business in his
 establishment.";

toilet:
if (toilet_door has open)

"The door to the bar stands OPEN at tens of
 curious eyes. You'd be forced to arrest yourself
 for LEWD conduct.";

print "You quickly remove your street clothes and
bundle them up together into an INFRA MINUSCULE
pack ready for easy transportation. ";

if (toilet_door has locked) {
give clothes ~worn; give costume worn;
"Then you unfold your INVULNERABLE-COTTON costume
 and turn into Captain FATE, defender of free
 will, adversary of tyranny!";

}
else {

deadflag = 3;
"Just as you are slipping into Captain FATE's
 costume, the door opens and a young woman
 enters. She looks at you and starts screaming,
 ~RAPIST! NAKED RAPIST IN THE TOILET!!!~^^
 Everybody in the cafe quickly comes to the
 rescue, only to find you ridiculously jumping on
 one leg while trying to get dressed. Their
 laughter brings a QUICK END to your
 crime-fighting career!";

}
thedark:

"Last time you changed in the dark,
 you wore the suit inside out!";

}

T
Y
P
E

13 • CAPTAIN FATE: THE FINAL CUT

147

Wear:
if (self has worn)

"You are already dressed as John Covarth.";
"The town NEEDS the power of Captain FATE, not the anonymity
 of John Covarth.";

],
has clothing proper pluralname;

See how the object deals only with Disrobe, Change and Wear. Disrobe and Wear are
standard library actions already defined in Inform, but we’ll have to make a new
verb to allow for CHANGE CLOTHES. In this game, Disrobe and Change are
considered synonymous for all purposes.

The goal of the game is for players to change their clothes, so we might expect
them to try this almost anywhere. What we do with the switch statement is to offer
a variety of responses according to the location variable. The street (in or out of
the booth) and the café all display refusals of some kind, until the player character
manages to enter the toilet, where we additionally require that he locks the door
before taking off his clothes. If the door is closed but not locked, he is interrupted
in his naked state by a nervous woman who starts shouting, and the game is lost
(this is not as unfair as it seems, because the player may always revert to the
previous state with UNDO). If the door is locked, he succeeds in his
transformation (we take away the worn attribute from the clothes and give it to the
costume instead). We add a special refusal to change in the dark, forcing players
to turn on the light and then, we hope, to find the coin. The Wear action just checks
if these clothes are already being worn, to offer two different rejection responses:
the goal of the game is to change into the hero’s suit, after which we’ll prevent a
change back into ordinary clothes. So now we are dealing with a Captain Fate in
full costume:

Object costume "your costume"
with name 'captain' 'captain^s' 'fate' 'fate^s' 'costume' 'suit',

description
"STATE OF THE ART manufacture, from chemically reinforced 100%
 COTTON-lastic(tm).",

before [;
Wear:

if (clothes has worn)
"First you'd have to take off your commonplace
 unassuming John Covarth INCOGNITO street clothes.";

Disrobe,Change:
if (clothes has worn)

"But you're not yet wearing it!";
else

"You need to wear your costume to FIGHT crime!";
Drop:

"Your UNIQUE Captain FATE multi-coloured costume? The most
 coveted clothing ITEM in the whole city? Certainly NOT!";

],
has clothing proper;

Note that we intercept the action WEAR COSTUME and hint that players should
try TAKE OFF CLOTHES instead. We don’t let them take off the costume once

T
Y
P
E

13 • CAPTAIN FATE: THE FINAL CUT

148

it’s being worn, and we certainly don’t let them misplace it anywhere, by refusing
to accept a Drop action.

It’s a wrap

Nearly there; just a few minor odds and ends to round things off.

Initialise routine

All the objects of our game are defined. Now we must add a couple of lines to the
Initialise routine to make sure that the player does not start the game naked:

[Initialise;
#Ifdef DEBUG; pname_verify(); #Endif; ! suggested by pname.h
location = street;
move costume to player;
move clothes to player; give clothes worn;
lookmode = 2;
"^^Impersonating mild mannered John Covarth, assistant help boy at an
 insignificant drugstore, you suddenly STOP when your acute hearing
 deciphers a stray radio call from the POLICE. There's some MADMAN
 attacking the population in Granary Park! You must change into your
 Captain FATE costume fast...!^^";

];

Remember that we included a disambiguation package, pname.h? There were
some additional comments in the accompanying text file that should be taken in
consideration:

pname.h provides a pname_verify routine. When DEBUG is defined, you
may call pname_verify() in your Initialise() routine to verify the pname
properties in your objects.

The designer of the package has made a debugging tool (a routine) to check for
errors when using his library, and he tells us how to use it. So we include the
suggested lines into our Initialise routine:

#Ifdef DEBUG; pname_verify(); #Endif;

As the text explains, what this does is: first check whether the game is being
compiled in Debug mode (games are compiled by default in Strict mode, which
includes Debug); if this is the case, run the pname_verify routine, so that it tests all
pname properties to see if they are written correctly.

Demise of our hero

We have made three possible endings:

1. The player attempts to change in the toilet with an unlocked door.

2. The player tries to attack Benny while wearing the costume.

3. The player manages to exit the café dressed as Captain Fate.

T
Y
P
E

13 • CAPTAIN FATE: THE FINAL CUT

149

(1) and (2) lose the game, (3) wins it. The library defaults for these two states
display, respectively,

*** You have died ***

*** You have won ***

These states correspond to the values of the deadflag variable: 1 for losing, 2 for
winning. However, we have made up different messages, because our hero does
not really die – ours suffers a FATE worse than death – and because we want to
give him a more descriptive winning line. Therefore, we must define a
DeathMessage routine as we did in “William Tell”, to write our customised
messages and assign them to deadflag values greater than 2.

[DeathMessage;
if (deadflag == 3) print "Your secret identity has been revealed";
if (deadflag == 4) print "You have been SHAMEFULLY defeated";
if (deadflag == 5) print "You fly away to SAVE the DAY";

];

Grammar

Finally, we need to extend the existing grammar, to allow for a couple of things.
We have already seen that we need a verb CHANGE. We’ll make it really
simple:

[ChangeSub;
if (noun has pluralname) print "They're";
else print "That's";
" not something you must change to save the day.";

];

Verb 'change'
* noun -> Change;

Just notice how the verb handler checks whether the noun given is plural or
singular, to display a suitable pronoun.

A further detail: when players are in the café, they might ask Benny for the coffee
(as we intend and heavily hint), for a sandwich or a pastry (both mentioned in the
café description), for food or a snack (mentioned here and there, and we have
provided for those); but what if they try a meat pie? Or scrambled eggs? There’s
just so much decoration one can reasonably insert in a game, and loading the
dictionary with Benny’s full menu would be overdoing it a bit.

One might reasonably imagine that the default line at the end of the Give action
in the orders property handles every input not already specified:

T
Y
P
E

T
Y
P
E

13 • CAPTAIN FATE: THE FINAL CUT

150

orders [;
Give: switch (noun) {

toilet_key: code for the key...
coffee: code for the coffee...
food: code for the food...
menu: code for the menu...
default:

"~I don't think that's on the menu, sir.~";
}

],

Not so. The library grammar that deals with ASK BENNY FOR... is this
(specifically, the last line):

Verb 'ask'
* creature 'about' topic -> Ask
* creature 'for' noun -> AskFor

You’ll see the noun token, which means that whatever the player asks him for
must be a real game object, visible at that moment. Assuming that the player
mentions such an object, the interpreter finds it in the dictionary and places its
internal ID in the noun variable, where our switch statement can handle it. So,
ASK BENNY FOR KEY assigns the toilet_key object to the noun variable, and
Benny responds. ASK BENNY FOR CUSTOMERS also works; the default case
picks that one up. But, ASK BENNY FOR SPAGHETTI BOLOGNESE won’t
work: we have no object for Spaghetti Bolognese (or any other delicacy from
Benny’s kitchen) – the words 'spaghetti' and 'bolognese' simply aren’t in the
dictionary. This is perhaps not a major deficiency in our game, but it takes very
little to allow Benny to use his default line for any undefined input from the
player. We need to extend the existing ASK grammar:

Extend 'ask'
* creature 'for' topic -> AskFor;

This line will be added to the end of the existing grammar for Ask, so it
doesn’t override the conventional noun-matching line. topic is a token that
roughly means “any input at all”; the value of noun isn’t important, because it’ll
be handled by the default case. Now players may ask Benny for a tuna sandwich
or a good time; they’ll get: “I don’t think that’s on the menu, sir”, which makes
Benny a barman with attitude.

And that’s it; on the slightly surreal note of ASK BENNY FOR A GOOD TIME
we’ve taken “Captain Fate” as far as we intend to. The guide is nearly done. All
that’s left is to recap some of the more important issues, talk a little more about
compilation and debugging, and send you off into the big wide world of IF
authorship.

T
Y
P
E

14 • SOME LAST LOUSY POINTS

151

14 • Some last lousy points

inally our three example games are written; we’ve shown you as
much of the Inform language as we’ve needed to, and made a lot of
observations about how and why something should be done.
Despite all that, there’s much that we’ve left unsaid, or touched on

only lightly. In this chapter we’ll revisit key topics and review some of the more
important omissions, to give you a better feel for what matters, and what can be
left on the shelf.

We’ll also talk, in “Reading other people’s code” on page 159, about a few ways
of doing things that we’ve chosen not to tell you about, but which you’re quite
likely to encounter if you look at Inform code written by other designers.

The tone here is perhaps a little dry, but trust us: in walking this dusty ground we
touch on just about everything that is fundamental in your overall understanding
of Inform. And as always, the Inform Designer’s Manual provides rounder and
more comprehensive coverage.

Expressions

In this guide we’ve use the placeholder expression a few times; here’s roughly
what we mean.

• An expression is a single value, or several values combined using operators and
sometimes parentheses (...).

• Possible values include:
• a literal number (-32768 to 32767)
• something that’s represented as a number (a character 'a', a dictionary

word 'aardvark', a string "aardvark's adventure" or an action ##Look)
• the internal identifier of a constant, an object, a class or a routine
• (only in a run-time statement, not in a compile-time directive) the

contents of a variable, or the return value from a routine.

• Possible operators include:
• an arithmetic operator: + - * / % ++ --
• a bitwise logical operator: & | ~
• a numeric comparison operator: == ~= > < >= <=
• an object conditional operator: ofclass in notin provides has hasnt
• a boolean combinational operator: && || ~~

14 • SOME LAST LOUSY POINTS

152

Internal IDs

Many of the items which you define in your source file – objects, variables,
routines, etc. – need to be given a name so that other items can refer to them. We
call this name an item’s internal identifier (because it’s used only within the
source file and isn’t visible to the player), and we use the placeholders obj_id,
var_id, routine_id, etc. to represent where it’s used. An internal ID

• can be up to thirty-two characters long

• must start with a letter or underscore, and then continue with letters A–Z,
underscore _ and digits 0–9 (where upper-case and lower-case letters are
treated as indistinguishable)

• should generally be unique across all files: your source file, the standard
library files, and any library contributions which you’ve used (except that a
routine’s local variables are not visible outside that routine).

Statements

A statement is an instruction intended for the interpreter, telling it what to do at
run-time. It must be given in lower-case, and always ends with a semicolon.

Some statements, like if, control one or more other statements. We use the
placeholder statement_block to represent either a single statement, or any number
of statements enclosed in braces:

statement;

{ statement; statement; ... statement; }

Statements that we’ve met

Our games have used these statements, about half of the Inform possibilities:

give obj_id attribute;
give obj_id attribute attribute ... attribute;

if (expression) statement_block
if (expression) statement_block else statement_block

move obj_id to parent_obj_id;

new_line;

objectloop (var_id) statement_block

print value;
print value, value, ... value;

print_ret value;
print_ret value, value, ... value;

remove obj_id;

return false;
return true;

14 • SOME LAST LOUSY POINTS

153

style underline; print...; style roman;

switch (expression) {
value: statement; statement; ... statement;
value: statement; statement; ... statement;
...
default: statement; statement; ... statement;

}

"string";
"string", value, ... value;

<action>;
<action noun>;
<action noun second>;

<<action>>;
<<action noun>>;
<<action noun second>>;

Statements that we’ve not met

Although our example games haven’t needed to use them, these looping
statements are sometimes useful:

break;

continue;

do statement_block until (expression)

for (set_var : loop_while_expression : update_var) statement_block

while (expression) statement_block

On the other hand, we suggest that you forget about these statements for now:

box
font
jump
spaces
string

Print rules

In print and print_ret statements, each value can be:

• a numeric expression, displayed as a signed decimal number,

• a "string", displayed literally, or

• a print rule. You can create your own, or use a standard one, including:

(a) obj_id – the object’s name, preceded by “a”, “an” or “some”
(the) obj_id – the object’s name, preceded by “the”
(The) obj_id – the object’s name, preceded by “The”
(number) expression – the numeric expression’s value in words

14 • SOME LAST LOUSY POINTS

154

Directives

A directive is an instruction intended for the compiler, telling it what to do at
compile-time, while the source file is being translated into Z-code. By convention
it’s given an initial capital letter (though the compiler doesn’t enforce this) and
always ends with a semicolon.

Directives that we’ve met

We’ve used all of these directives; note that for Class, Extend, Object and Verb the
full supported syntax is more sophisticated than the basic form presented here:

Class class_id
with property value,

 property value,
 ...
 property value,

has attribute attribute ... attribute;

Constant const_id;
Constant const_id = expression;
Constant const_id expression;

Extend 'verb'
 * token token ... token -> action
 * token token ... token -> action
 ...
 * token token ... token -> action;

Include "filename";

Object obj_id "external_name" parent_obj_id
with property value,

 property value,
 ...
 property value,

has attribute attribute ... attribute;

class_id obj_id "external_name" parent_obj_id
with property value,

 property value,
 ...
 property value,

has attribute attribute ... attribute;

Release expression;

Replace routine_id;

Serial "yymmdd";

Verb 'verb'
 * token token ... token -> action
 * token token ... token -> action
 ...
 * token token ... token -> action;

! comment text which the compiler ignores

[routine_id; statement; statement; ... statement;];

#Ifdef any_id; ... #Endif;

14 • SOME LAST LOUSY POINTS

155

Directives that we’ve not met

There’s only a handful of useful directives which we haven’t needed to use:

Attribute attribute;

Global var_id;
Global var_id = expression;

Property property;

Statusline score;
Statusline time;

but there’s a whole load which are of fairly low importance for now:

Abbreviate
Array
Default
End
Ifndef
Ifnot
Iftrue
Iffalse
Import
Link
Lowstring
Message
Switches
System_file
Zcharacter

Objects

An object is really just a collection of variables which together represent the
capabilities and current status of some specific component of the model world.
Full variables are called properties; simpler two-state variables are attributes.

Properties

The library defines around forty-eight standard property variables (such as before
or name), but you can readily create further ones just by using them within an
object definition.

You can create and initialise a property in an object’s with segment:

property, ! set to zero/false

property value, ! set to a single value

property value value ... value, ! set to a list of values

In each case, the value is either a compile-time expression, or an embedded
routine:

property expression,

property [; statement; statement; ... statement;],

14 • SOME LAST LOUSY POINTS

156

You can refer to the value of a property:

self.property ! only within that same object

obj_id.property ! everywhere

and you can test whether an object definition includes a given property:

(obj_id provides property) ! is true or false

Attributes

The library defines around thirty standard property attributes (such as open or
worn); creating further ones is done relatively rarely.

You can initialise attributes in an object’s has segment:

attribute attribute ... ! initially set

~attribute ~attribute ... ! initially unset (the default)

You can set and clear attributes:

give obj_id attribute attribute ... attribute;

give obj_id ~attribute ~attribute ... ~attribute;

and you can test the current setting of an attribute:

(obj_id has attribute) ! is true or false

(obj_id hasnt attribute) ! is false or true

Classes

You can test whether an object is a member of a given class:

(obj_id ofclass class_id) ! is true or false

The object tree

You can specify an object’s parent (its location at the start of the game) as part of
the object definition:

Object obj_id "external_name" parent_obj_id
with ...

There’s another syntax, involving arrows -> -> like this, which can also be used
to establish an object’s initial parent. We touch on it in “Reading other people’s
code” on page 159.

You can relocate an object within the tree:

move obj_id to parent_obj_id;

and you can move an object out of the tree so that it has no parent:

remove obj_id;

14 • SOME LAST LOUSY POINTS

157

Given an object’s obj_id, you can determine that object’s current parent, its eldest
child, and the next youngest child – the adjacent object – having the same parent.
You can also count how many immediate children it has:

parent(obj_id)

child(obj_id)

sibling(obj_id)

children(obj_id)

You can test whether an obj_id is an immediate child of another object:

(obj_id in parent_obj_id) ! is true or false

(obj_id notin parent_obj_id) ! is false or true

If you need to know whether an object is a child, or grandchild, or
great-grandchild, etc. of another object, use:

IndirectlyContains(parent_obj_id, obj_id) ! is true or false

Finally, you can determine the object (if any) of which two specified objects are
both children, or grandchildren, or great-grandchildren, etc. using:

CommonAncestor(obj_id1, obj_id2)

Routines

Inform provides standalone routines and embedded routines.

Standalone routines

Standalone routines are defined like this:

[routine_id; statement; statement; ... statement;];

and called like this:

routine_id()

Embedded routines

These are embedded as the value of an object’s property:

property [; statement; statement; ... statement;],

and are usually called automatically by the library, or manually by:

self.property() ! only within that same object

obj_id.property() ! everywhere

14 • SOME LAST LOUSY POINTS

158

Arguments and local variables

Both types of routine support up to fifteen local variables – variables which can
be used only by the statements within the routine, and which are automatically
initialised to zero every time that the routine is called:

[routine_id var_id var_id ... var_id; statement; statement; ... statement;];

property [var_id var_id ... var_id; statement; statement; ... statement;],

You can pass up to seven arguments to a routine, by listing those arguments
within the parentheses when you call the routine. The effect is simply to initialise
the matching local variables to the argument values rather than to zero:

routine_id(expression, expression, ... expression)

Although it works, this technique is rarely used with embedded routines, because
there is no mechanism for the library to supply argument values when calling the
routine.

Return values

Every routine returns a single value, which is supplied either explicitly by some
form of return statement:

[routine_id; statement; statement; ... return expr;]; ! returns expr

property [; statement; statement; ... return expr;], ! returns expr

or implicitly when the routine runs out of statements. If none of these statements
is one – return, print_ret, "..." or <<...>> – that causes an explicit return, then:

[routine_id; statement; statement; ... statement;];

returns true and

property [; statement; statement; ... statement;]

returns false.

This difference is important. Remember it by the letter pairs STEF: left to
themselves, Standalone routines return True, Embedded routines return False.

Here’s an example standalone routine which returns the larger of its two
argument values:

[Max a b; if (a > b) return a; else return b;];

and here are some examples of its use (note that the first example, though legal,
does nothing useful whatsoever):

Max(x,y);

x = Max(2,3);

if (Max(x,7) == 7) ...

switch (Max(3,y)) { ...

14 • SOME LAST LOUSY POINTS

159

Library routines versus entry points

A library routine is a standard routine, included within the library files, which
you can optionally call from your source file if you require the functionality
which the routine provides. We’ve mentioned these library routines:

IndirectlyContains(parent_obj_id, obj_id)

PlaceInScope(obj_id)

PlayerTo(obj_id, flag)

StartDaemon(obj_id)

StopDaemon(obj_id)

By contrast, an entry point routine is a routine which you can provide in your
source file, in which case the library calls it at an appropriate time. We’ve
mentioned these optional entry point routines:

DeathMessage()

InScope(actor_obj_id)

And this, the only mandatory one:

Initialise()

There are full lists in “Library routines” on page 236 and “Optional entry points”
on page 242.

Reading other people’s code

Right at the start of this guide, we warned you that we weren’t setting out to be
comprehensive; we’ve concentrated on presenting the most important aspects of
Inform, as clearly as we can. However, when you read the Inform Designer’s
Manual, and more especially when you look at complete games or library
extensions which other designers have produced, you’ll come across other ways
of doing things – and it might be that you, like other authors, prefer them over
our methods. Just try to find a style that suits you and, this is the important bit,
be consistent about its use. In this section, we highlight some of the more obvious
differences which you may encounter.

Code layout

Every designer has his or her own style for laying out their source code, and
they’re all worse than the one you adopt. Inform’s flexibility makes it easy for
designers to choose a style that suits them; unfortunately, for some designers this
choice seems influenced by the Jackson Pollock school of art. We’ve advised you
to be consistent, to use plenty of white space and indentation, to choose sensible
names, to add comments at difficult sections, to actively think, as you write your
code, about making it as readable as you can.

14 • SOME LAST LOUSY POINTS

160

This is doubly true if you ever contemplate sharing a library extension with the
rest of the community. This example, with the name changed, is from a file in the
Archive:

[xxxx i j;
if (j==0) rtrue;
if (i in player) rtrue;
if (i has static || (i has scenery)) rtrue;
action=##linktake;
if (runroutines(j,before) ~= 0 || (j has static || (j has scenery))) {
print "You'll have to disconnect ",(the) i," from ",(the) j," first.^";
rtrue;
}
else {
if (runroutines(i,before)~=0 || (i has static || (i has scenery))) {
print "You'll have to disconnect ",(the) i," from ",(the) j," first.^";
rtrue;
}
else
if (j hasnt concealed && j hasnt static) move j to player;
if (i hasnt static && i hasnt concealed) move i to player;
action=##linktake;
if (runroutines(j,after) ~= 0) rtrue;
print "You take ",(the) i," and ",(the) j," connected to it.^";
rtrue;
}
];

Here’s the same routine after a few minutes spent purely on making it more
comprehensible; we haven’t actually tested that it (still) works, though that
second else looks suspicious:

[xxxx i j;
if (i in player || i has static or scenery || j == nothing) return true;
action = ##LinkTake;
if (RunRoutines(j,before) || j has static or scenery)

"You'll have to disconnect ", (the) i, " from ", (the) j, " first.";
else {

if (RunRoutines(i,before) || i has static or scenery)
"You'll have to disconnect ", (the) i, " from ", (the) j, " first.";

else
if (j hasnt static or concealed) move j to player;

if (i hasnt static or concealed) move i to player;
if (RunRoutines(j,after)) return true;
"You take ", (the) i, " and ", (the) j, " connected to it.";

}
];

We hope you’ll agree that the result was worth the tiny extra effort. Code gets
written once; it gets read dozens and dozens of times.

14 • SOME LAST LOUSY POINTS

161

Shortcuts

There are a few statement shortcuts, some more useful than others, which you’ll
come across.

• These five lines all do the same thing:

return true;
return 1;
return;
rtrue;
]; ! at the end of a standalone routine

• These four lines all do the same thing:

return false;
return 0;
rfalse;
]; ! at the end of an embedded routine

• These four lines all do the same thing:

print "string"; new_line; return true;
print "string^"; return true;
print_ret "string";
"string";

• These lines are the same:

print value1; print value2; print value3;
print value1, value2, value3;

• These lines are the same:

<action noun second>; return true;
<<action noun second>>;

• These lines are also the same:

print "^";
new_line;

• These if statements are equivalent:

if (MyVar == 1 || MyVar == 3 || MyVar == 7) ...
if (MyVar == 1 or 3 or 7) ...

• These if statements are equivalent as well:

if (MyVar ~= 1 && MyVar ~= 3 && MyVar ~= 7) ...
if (MyVar ~= 1 or 3 or 7) ...

• In an if statement, the thing in parentheses can be any expression; all that
matters is its value: zero (false) or anything else (true). For example, these
statements are equivalent:

if (MyVar ~= false) ...
if (~~(MyVar == false)) ...
if (MyVar ~= 0) ...
if (~~(MyVar == 0)) ...
if (MyVar) ...

14 • SOME LAST LOUSY POINTS

162

Note that the following statement specifically tests whether MyVar contains
true (1), not whether its value is anything other than zero.

if (MyVar == true) ...

• If MyVar is a variable, the statements MyVar++; and ++MyVar; work the same as
MyVar = MyVar + 1; For example, these lines are equivalent:

MyVar = MyVar + 1; if (MyVar == 3) ...
if (++MyVar == 3) ...
if (MyVar++ == 2) ...

What’s the same about MyVar++ and ++MyVar is that they both add one to MyVar.
What’s different about them is the value to which the construct itself
evaluates: MyVar++ returns the current value of MyVar and then performs the
increment, whereas ++MyVar does the “+1” first and then returns the
incremented value. In the example, if MyVar currently contains 2 then ++MyVar
returns 3 and MyVar++ returns 2, even though in both cases the value of MyVar
afterwards is 3. As another example, this code (from Helga in “William
Tell”):

Talk: self.times_spoken_to = self.times_spoken_to + 1;
switch (self.times_spoken_to) {

1: score = score + 1;
print_ret "You warmly thank Helga for the apple.";

2: score = score + 1;
print_ret "~See you again soon.~";

default: return false;
}

],

could have been written more succinctly like this:

Talk: switch (++self.times_spoken_to) {
1: score++;

print_ret "You warmly thank Helga for the apple.";
2: score++;

print_ret "~See you again soon.~";
default: return false;
}

],

• Similarly, the statements MyVar--; and --MyVar; work the same as
MyVar = MyVar - 1; Again, these lines are equivalent:

MyVar = MyVar - 1; if (MyVar == 7) ...
if (--MyVar == 7) ...
if (MyVar-- == 8) ...

“number” property and “general” attribute

The library defines a standard number property and a standard general attribute,
whose roles are undefined: they are general-purpose variables available within
every object to designers as and when they desire.

14 • SOME LAST LOUSY POINTS

163

We recommend that you avoid using these two variables, primarily because their
names are, by their very nature, so bland as to be largely meaningless. Your
game will be clearer and easier to debug if you instead create new property
variables – with appropriate names – as part of your Object and Class definitions.

Common properties and attributes

As an alternative to creating new individual properties which apply only to a
single object (or class of objects), it’s possible to devise properties and new
attributes which, like those defined by the library, are available on all objects.
The need to do this is actually quite rare, and is mostly confined to library
extensions (for example, the pname.h extension which we encountered in
“Captain Fate: take 3” on page 127 gives every object a pname property and a
phrase_matched attribute). To create them, you would use these directives near the
start of your source file:

Attribute attribute;

Property property;

We recommend that you avoid using these two directives unless you really do
need to affect every object in your game. There is a limit of forty-eight attributes
(of which the library currently defines around thirty) and sixty-two of these
common properties (of which the library currently defines around forty-eight).
On the other hand, the number of individual properties which you can add is
virtually unlimited.

Setting up the object tree

Throughout this guide, we’ve defined the initial position of each object within the
overall object tree either by explicitly mentioning its parent’s obj_id (if any) in the
first line of the object definition – what we’ve been calling the header information
– or, for a few objects which crop up in more than one place, by using their
found_in properties. For example, in “William Tell” we defined twenty-seven
objects; omitting those which used found_in to define their placement at the start
of the game, we’re left with object definitions starting like this:

Room street "A street in Altdorf"

Room below_square "Further along the street"
Furniture stall "fruit and vegetable stall" below_square
Prop "potatoes" below_square
Prop "fruit and vegetables" below_square
NPC stallholder "Helga" below_square

Room south_square "South side of the square"

Room mid_square "Middle of the square"
Furniture pole "wooden pole" mid_square

Room north_square "North side of the square"

14 • SOME LAST LOUSY POINTS

164

Room marketplace "Marketplace near the square"
Object tree "lime tree" marketplace
NPC governor "governor" marketplace

Object bow "bow"

Object quiver "quiver"
Arrow "arrow" quiver
Arrow "arrow" quiver
Arrow "arrow" quiver

Object apple "apple"

You’ll see that several of the objects begin the game as parents: below_square,
mid_square, marketplace and quiver all have child objects beneath them; those
children mention their parent as the last item of header information.

There’s an alternative object syntax which is available to achieve the same object
tree, using “arrows”. That is, we could have defined those parent-and-child
objects as:

Room below_square "Further along the street"
Furniture -> stall "fruit and vegetable stall"
Prop -> "potatoes"
Prop -> "fruit and vegetables"
NPC -> stallholder "Helga"

Room mid_square "Middle of the square"
Furniture -> pole "wooden pole"

Room marketplace "Marketplace near the square"
Object -> tree "lime tree"
NPC -> governor "governor"

Object quiver "quiver" -
Arrow -> "arrow"
Arrow -> "arrow"
Arrow -> "arrow"

The idea is that an object’s header information either starts with an arrow, or ends
with an obj_id, or has neither (having both isn’t permitted). An object with neither
has no parent: in this example, that’s all the Rooms, and also the bow and the quiver
(which are moved to the player object in the Initialise routine) and the apple
(which remains without a parent until Helga gives it to William).

An object which starts with a single arrow -> is defined to be a child of the nearest
previous object without a parent. Thus, for example, the tree and governor objects
are both children of the marketplace. To define a child of a child, you’d use two
arrows -> ->, and so on. In “William Tell”, that situation doesn’t occur; to
illustrate how it works, imagine that at the start of the game the potatoes and the
other fruit and vegetables where actually on the stall. Then we might have used:

14 • SOME LAST LOUSY POINTS

165

Room below_square "Further along the street"
Furniture -> stall "fruit and vegetable stall"
Prop -> -> "potatoes"
Prop -> -> "fruit and vegetables"
NPC -> stallholder "Helga"
...

That is, the objects with one arrow (the stall and stallholder) are children of the
nearest object without a parent (the Room), and the objects with two arrows (the
produce) are children of the nearest object defined with a single arrow (the stall).

The advantages of using arrows include:

• You’re forced to define your objects in a “sensible” order.

• Fewer obj_ids may need to be used (though in this game it would make no
difference).

The disadvantages include:

• The fact that objects are related by the physical juxtaposition of their
definitions is not necessarily intuitive to all designers.

• Especially in a crowded room, it’s harder to be certain exactly how the
various parent–child relationships are initialised, other than by carefully
counting lots of arrows.

• If you relocate the parent within the initial object hierarchy to a higher or
lower level, you’ll need also to change its children by adding or removing
arrows; this isn’t necessary when the parent is named in the child headers.

We prefer to explicitly name the parent, but you’ll encounter both forms very
regularly.

Quotes in “name” properties

We went to some lengths, way back in “Things in quotes” on page 47, to explain
the difference between double quotes "..." (strings to be output) and single
quotes '...' (input tokens – dictionary words). Perhaps somewhat unfortunately,
Inform allows you to blur this clean distinction: you can use double quotes in name
properties and Verb directives:

NPC stallholder "Helga" below_square
with name "stallholder" "greengrocer" "monger" "shopkeeper" "merchant"

"owner" "Helga" "dress" "scarf" "headscarf",
...

Verb "talk" "t//" "converse" "chat" "gossip"
* "to"/"with" creature -> Talk
* creature -> Talk;

Please don’t do this. You’ll just confuse yourself: those are dictionary words, not
strings; it’s just as easy – and far clearer – to stick rigidly to the preferred
punctuation.

14 • SOME LAST LOUSY POINTS

166

Obsolete usages

Finally, remember that Inform has been evolving since 1993. Over that time,
Graham has taken considerable care to maintain as much compatibility as
possible, so that games written years ago, for earlier versions of the compiler and
the library, will still compile today. While generally a good thing, this brings the
disadvantage that a certain amount of obsolete baggage is still lying around. You
may, for example, see games using Nearby directives (denotes parentage, roughly
the same as ->) and near conditions (roughly, having the same parent), or with “\”
controlling line breaks in long print statements. Try to understand them; try not
to use them.

15 • COMPILING YOUR GAME

167

15 • Compiling your game

lmost as rarely as an alchemist producing gold from base metal, the
compilation process turns your source file into a story file (though
the more usual outcome is a reproachful explanation of why – again
– that hasn’t happened). The magic is performed by the compiler

program, which takes your more or less comprehensible code and translates it
into a binary file: a collection of numbers following a specific format understood
only by Z-code interpreters.

On the surface, compilation is a very simple trick. You just run the compiler
program, indicating which is the source file from which you wish to generate a
game and presto! The magic is done.

However, the ingredients for the spell must be carefully prepared. The compiler
“reads” your source code, but not as flexibly as a human would. It needs the
syntax to follow some very precise rules, or it will complain that it cannot do its
job under these conditions. The compiler cares little for meaning, and a lot about
orthography, like a most inflexible teacher; no moist Bambi eyes are going to
save you here.

Although the spell made by the compiler is always the same one, you can
indicate up to a point how you want the magic to happen. There are a few options
to affect the process of compilation; some you define in the source code, some
with switches and certain commands when you run the program. The compiler
will work with some default options if you don’t define any, but you may change
these if you need to. Many of these options are provided “just in case” special
conditions apply; others are meant for use of experienced designers with
advanced and complex requirements, and are best left (for now) to those
proficient in the lore.

Ingredients

If the source file is not written correctly the compiler will protest, issuing either a
warning message or an error message. Warnings are there to tell you that there
may be a mistake that could affect the behaviour of the game at run-time; that
won’t stop the compiler from finishing the process and producing a story file.
Errors, on the other hand, reflect mistakes that make it impossible for the
compiler to output such a file. Of these, fatal errors stop compilation
immediately, while non-fatal errors allow the compiler to continue reading the
source file. (As you’ll see in a minute, this is perhaps a mixed blessing: while it
can be useful to have the compiler tell you about as many non-fatal errors as it
can, you’ll often find that many of them are caused by the one simple slip-up.)

15 • COMPILING YOUR GAME

168

Fatal errors

It’s difficult – but not impossible – to cause a fatal error. If you indicate the wrong
file name as source file, the compiler won’t even be able to start, telling you:

Couldn't open source file filename

If the compiler detects a large number of non-fatal errors, it may abandon the
whole process with:

Too many errors: giving up

Otherwise, fatal errors most commonly occur when the compiler runs out of
memory or disk space; with today’s computers, that’s pretty unusual. However,
you may hit problems if the story file, which must fit within the fairly limited
resources specified by the Z-Machine, becomes too large. Normally, Inform
compiles your source code into a Version 5 file (that’s what the .z5 extension you
see in the output file indicates), with a maximum size of 256 Kbytes. If your game
is larger than this, you’ll have to compile into Version 8 file (.z8), which can grow
up to 512 Kbytes (and you do this very simply by setting the -v8 switch; more on
that in a minute). It takes a surprising amount of code to exceed these limits; you
won’t have to worry about game size for the next few months, if ever.

Non-fatal errors

Non-fatal errors are much more common. You’ll learn to be friends with:

Expected something but found something else

This is the standard way of reporting a punctuation or syntax mistake. If you type
a comma instead of a semicolon, Inform will be looking for something in vain.
The good news is that you are pointed to the offending line of code:

Tell.inf(76): Error: Expected directive, '[' or class name but found found_in
> found_in
Compiled with 1 error (no output)

You see the line number (76) and what was found there, so you run to the source
file and take a look; any decent editor will display numbers alongside your lines
if you wish, and will usually let you jump to a given line number. In this case, the
error was caused by a semicolon after the description string, instead of a comma:

Prop "assorted stalls"
with name 'assorted' 'stalls',

description "Food, clothing, mountain gear; the usual stuff.";
found_in street below_square,

has pluralname;

Here’s a rather misleading message which maybe suggests that things in our
source file are in the wrong order, or that some expected punctuation is missing:

Fate.inf(459): Error: Expected name for new object or its textual short name
but found door
> Object door
Compiled with 1 error (no output)

15 • COMPILING YOUR GAME

169

In fact, there’s nothing wrong with the ordering or punctuation. The problem is
actually that we’ve tried to define a new object with an internal ID of door –
reasonably enough, you might think, since the object is a door – but Inform
already knows the word (it’s the name of a library attribute). Unfortunately, the
error message provides only the vaguest hint that you just need to choose another
name: we used toilet_door instead.

Once the compiler is off track and can’t find what was expected, it’s common for
the following lines to be misinterpreted, even if there’s nothing wrong with them.
Imagine a metronome ticking away in time with a playing record. If the record
has a scratch and the stylus jumps, it may seem that the rest of the song is out of
sync, when it’s merely a bit “displaced” because of that single incident. This also
happens with Inform, which at times will give you an enormous list of things
Expected but not Found. The rule here is: correct the first mistake on the list and
recompile. It may be that the rest of the song was perfect.

It would be pointless for us to provide a comprehensive list of errors, because
mistakes are numerous and, anyhow, the explanatory text usually indicates what
was amiss. You’ll get errors if you forget a comma or a semicolon. You’ll get
errors if your quotes or brackets don’t pair up properly. You’ll get errors if you
use the same name for two things. You’ll get errors – for many reasons. Just read
the message, go to the line it mentions (and maybe check those just before and
after it as well), and make whatever seems a sensible correction.

Warnings

Warnings are not immediately catastrophic, but you should get rid of them to
ensure a good start at finding run-time mistakes (see “Debugging your game” on
page 173). You may declare a variable and then not use it; you may mistake
assignment and arithmetic operators (= instead of ==); you may forget the comma
that separates properties, etc. For all these and many other warnings, Inform has
found something which is legal but doubtful.

One common incident is to return in the middle of a statement block, before the
rest of statements can be reached. This is not always as evident as it looks, for
instance in a case like this:

if (steel_door has open) {
print_ret "The breeze blows out your lit match.";
give match ~light;

}

In the above example, the print_ret statement returns true after the string has
been printed, and the give match ~light line will never happen. Inform detects the
fault and warns you. Probably the designer’s intention was:

if (steel_door has open) {
give match ~light;
print_ret "The breeze blows out your lit match.";

}

15 • COMPILING YOUR GAME

170

Compiling à la carte

One of the advantages of Inform is its portability between different systems and
machines. Specific usage of the compiler varies accordingly, but some features
should be in all environments. To obtain precise information about any
particular version, run the compiler with the -h1 switch – see “Switches” on
page 171.

Often the compiler is run with the name of your source file as its only parameter.
This tells the compiler to “read this file and from it generate a Version 5 story file
of the same name”. The source file is mostly full of statements which define how
the game is to behave at run-time, but will also include compile-time instructions
directed at the compiler itself (although such an instruction looks a lot like a
statement, it’s actually quite different in what it does, and is known as a
directive). We have already seen the Include directive:

Include "filename";

When the compiler reaches a line like this, it looks for filename – another file also
containing Inform code – and processes it as if the statements and directives
included in filename were in that precise spot where the Include directive is.

In every Inform game we Include the library files Parser, VerbLib and Grammar, but
we may Include other files. For example, this is the way to incorporate library
extensions contributed by other people, as you saw when we incorporated
pname.h into our “Captain Fate” game.

NOTE: on some machines, a library file is actually called – for example –
Parser.h, on others just Parser. The compiler automatically deals with such
differences; you can always type simply Include "Parser"; in your source file.

As you grow experienced in Inform, and your games become more complex,
you may find that the source file becomes unmanageably large. One useful
technique is then to divide it into a number of sections, each stored in a separate
file, which you Include into a short master game file. For example:

15 • COMPILING YOUR GAME

171

!==
Constant Story "War and Peace";
Constant Headline

"^An extended Inform example
 ^by me and Leo Tolstoy.^";

Include "Parser";
Include "VerbLib";

Include "1805";
Include "1806-11";
Include "1812A";
Include "1812B";
Include "1813-20";

Include "Grammar";

Include "Verbski";

!==

Switches

When you run the compiler you can set some optional controls; these are called
switches because most of them are either on or off (although a few accept a
numeric value 0–9). Switches affect compilation in a variety of ways, often just
by changing the information displayed by the compiler when it’s running. A
typical command line (although this may vary between machines) would be:

inform source_file story_file switches

where “inform” is the name of the compiler, the story_file is optional (so that you
can specify a different name from the source_file) and the switches are also
optional. Note that switches must be preceded by a hyphen –; if you want to set,
for instance, Strict mode, you’d write -S, while if you want to deactivate it, you’d
write -~S. The tilde sign can, as elsewhere, be understood as “not”. If you wish to
set many switches, just write them one after another separated by spaces and
each with its own hyphen, or merge them with one hyphen and no spaces:

inform MyGame.inf -S -s -X

inform MyGame.inf -SsX

Normally, all switches are off by default, except Strict mode (-S), which is on and
checks the code for additional mistakes, also making the debugging verbs
available at run time. This is the ideal setting while coding, but you should turn
strict mode off (-~S) when you release your game to the public. This is fortunately
very easy to check, since the game banner ends with the letters “SD” if the game
was compiled in Strict mode:

Captain Fate
A simple Inform example
by Roger Firth and Sonja Kesserich.
Release 2 / Serial number 020827 / Inform v6.21 Library 6/10 SD

15 • COMPILING YOUR GAME

172

Switches are case sensitive, so you get different effects from -x and -X. Some of
the more useful switches are:

-~S

Set compiler Strict mode off. This deactivates some additional error checking
features when it reads your source file and also omits the debugging verbs
from the story file (unless you then specify -D). Strict mode is on by default.

-v5 -v8

Compile to this version of story file. Versions 5 (on by default) and 8 are the
only ones you should ever care about; they produce, respectively, story files
with the extensions .z5 and .z8. Version 5 was the Advanced Infocom
design, and is the default produced by Inform. This is the version you’ll
normally be using, which allows file sizes up to 256 Kbytes. If your game
grows beyond that size, you’ll need to compile to the Version 8 story file,
which is very similar to Version 5 but allows a 512 Kbytes file size.

-D -X

Include respectively the debugging verbs and the Infix debugger in the story
file (see “Debugging your game” on page 173).

-h1 -h2

Display help information about the compiler. -h1 produces information
about file naming, and -h2 about the available switches.

-n -j

-n displays the number of declared attributes, properties and actions. -j lists
objects as they are being read and constructed in the story file.

-s

Offer game statistics. This provides a lot of information about your game,
including the number of objects, verbs, dictionary entries, memory usage,
etc., while at the same time indicating the maximum allowed for each entry.
This can be useful to check whether you are nearing the limits of Inform.

-r

Record all the text of the game into a temporary file, useful to check all your
descriptions and messages by running them through a spelling checker.

If you run the compiler with the -h2 switch, you’ll find that there are many more
switches than these, offering mostly advanced or obscure features which we
consider to be of little interest to beginners. However, feel free to try whatever
switches catch your eye; nothing you try here will affect your source file, which
is strictly read-only as far as the compiler is concerned.

16 • DEBUGGING YOUR GAME

173

16 • Debugging your game

obody understands the phrase errare humanum est quite in the same
way as a programmer does. Computers are highly efficient machines
capable of wondrous calculations, but they lack imagination and
insist that every single item thrown at them must be presented

according to certain rules previously defined. You can’t negotiate with a
computer; you either bow in submission or bite the dust.

Inform behaves no differently. If you make a typing or syntax mistake, the
compiler will send you back to revise your work. “It was just a lousy comma!”
you cry in disgust. The compiler remains silent. It has nothing to gain by
argument, because it’s always right. So you go and change the lousy comma. No
harm done except perhaps to your pride.

Errors that are found during compilation may be tedious to correct, but are
usually easy to find; after all, the compiler tries politely to point out what and
where the mistake was. Trouble begins after you’ve managed to satisfy all of the
compiler’s complaints. You are rewarded by a clean screen, devoid of a list of
errors, and you are offered – a gift!

A new file has appeared in your folder. A story file. Yes, the game. You quickly
open your favourite interpreter and begin to play – only to discover the dark side
of errors, the bugs. Bugs come in all shapes, colours and sizes: big, small, stupid,
absurd, minor, disturbing, nerve-wracking and catastrophic. They are often
unpredictable: they regale our eyes with surprising, unexpected behaviour. They
defy logic: I can TAKE the key, and the game even says “Taken”, but the key
remains in the same place and won’t appear in my inventory. Or: opening the
door while wearing the fur coat causes a programming error and a cryptic
message “tried to find the attribute of nothing”. And many, many others.

When designing a game you try to take into consideration the states that your
objects will find themselves in, but any medium-sized game has such a number
of objects and actions that it’s almost impossible to think of all the possible
variations, permutations and possibilities.

Debugging consists in finding run-time errors, and then correcting them. Pretty
easy, you might think, but no. Detection of such errors is not straightforward,
since they tend to manifest themselves only under precise circumstances. Then
you have to investigate your code to find out what is causing them. And then, if
you discover the offending lines, you must make the appropriate changes. (There
is also the case when you can’t find the mistake. Don’t worry, it’s there
somewhere. Persistence always pays off in the end.)

To help you out in this daunting task, Inform has a stock of special actions: the
debugging verbs. They become available at run-time when the source file is
compiled in Debug mode (-D switch) or in Strict mode (-S switch – which

16 • DEBUGGING YOUR GAME

174

includes Debug mode). In fact, the compiler has Strict mode on by default as a
safety device, for it checks your code more carefully for some additional errors.
When you are ready to release your game, you’ll have to recompile, switching
off Strict mode (-~S) to avoid allowing the players to benefit from the debugging
verbs. We’ll cover briefly a few of these actions, and tell you what they do.

Command lists

The only way to test a game is to play it. As you make progress writing code, the
game grows complicated, and it becomes really tiresome to repeat all the
commands every time you play. Not unusually, when you fix the behaviour of
some object, you are also affecting the behaviour of other objects or actions, so
it’s a good idea to test everything now and then; you have to make sure that your
recent changes and fixes didn’t spoil something that previously worked fine.

The RECORDING command (RECORDING ON and RECORDING OFF) saves
the commands that you type as you play into a text file (you’ll probably be
prompted for a file name). When you add a new section to the game, you can
play to that point, type RECORDING ON to capture (in another file) the
commands which exercise that section, and then later use your editor to append
those new commands to the existing list.

The REPLAY command runs the text file created by RECORDING, playing all
the stored commands in one go. This way you can very quickly check whether
everything is working as it should.

You can open the file of commands with any text editor program and modify the
contents as need arises: for instance, if you want to delete some commands no
longer necessary because of a change to the game, or if you forgot to test some
particular object and you need to add new commands.

This technique (the use of recorded lists of commands) is, and we can’t emphasise
it too strongly, one of the most useful testing features for a game designer.

Spill them guts

Some debugging verbs offer information about the current state of things.

TREE

This action lists all the objects in the game and how they contain each other.
You can discover the possessions of just one object by typing TREE object. All
the objects that you have defined in the source file are turned into numbers
by Inform when it compiles the story file; this command also lists those
internal obj_id numbers.

16 • DEBUGGING YOUR GAME

175

SHOWOBJ object

Displays information about the object, the attributes it currently has and the
value of its properties. The object can be anywhere, not necessarily in scope.
You can also type the object number, if the object in question does not have
a name. For instance, in “Heidi”:

>SHOWOBJ NEST
Object "bird's nest" (29) in "yourself"
has container moved open workflag
with name 'bird's' 'nest' 'twigs' 'moss',

description "The nest is carefully woven of twigs and moss." (19230),

SHOWVERB verb

Displays the grammar of the verb, just like a standard Verb definition. This
comes in handy when you have tampered with Extend and are not sure about
the final results of your machinations. An example from “William Tell”:

>SHOWVERB GIVE
Verb 'feed' 'give' 'offer' 'pay'

 * held 'to' creature -> Give
 * creature held -> Give reverse
 * 'over' held 'to' creature -> Give
 * 'homage' 'to' noun -> Salute

The first lines reproduce the verb definition as it’s written in the library. The
last line, however, is the direct consequence of our tailored Extend:

Extend 'give'
* 'homage' 'to' noun -> Salute;

SCOPE

Lists all of the objects currently in scope (in general terms, visible to the
player character). More powerfully, you can type SCOPE object to discover
which objects are in scope for the named object. This feature becomes useful
when you have NPCs capable of tampering with their surroundings.

What on earth is going on?

There comes the time when some actions don’t produce the desired effects and
you don’t know why. The following debugging verbs offer information about
what the interpreter is up to, which might enable you to identify the moment
when things started to go awry.

ACTIONS (or ACTIONS ON) and ACTIONS OFF

Gives information about all the actions going on. Some actions get redirected
to others, and this becomes at times a source of mischief and mystery; here
you get a clue what’s happening. For example, take this transcript from
“William Tell”:

16 • DEBUGGING YOUR GAME

176

Further along the street
People are still pushing and shoving their way from the southern gate towards
the town square, just a little further north. You recognise the owner of a fruit
and vegetable stall.

Helga pauses from sorting potatoes to give you a cheery wave.

>SEARCH STALL
[Action Search with noun 35 (fruit and vegetable stall)]
[Action Examine with noun 35 (fruit and vegetable stall) (from < > statement)]
It's really only a small table, with a big heap of potatoes, some carrots and
turnips, and a few apples.
...

CHANGES (or CHANGES ON) and CHANGES OFF

Tracks object movements, and changes to properties and attributes:

Middle of the square
There is less of a crush in the middle of the square; most people prefer to
keep as far away as possible from the pole which towers here, topped with that
absurd ceremonial hat. A group of soldiers stands nearby, watching everyone who
passes.

>GO NORTH
[Setting Middle of the square.warnings_count to 1]
A soldier bars your way.

"Oi, you, lofty; forgot yer manners, didn't you? How's about a nice salute for
the vogt's hat?"

>AGAIN
[Setting Middle of the square.warnings_count to 2]

"I know you, Tell, yer a troublemaker, ain't you? Well, we don't want no bovver
here, so just be a good boy and salute the friggin' hat. Do it now: I ain't
gonna ask you again..."

>SALUTE HAT
[Setting wooden pole.has_been_saluted to 1]
You salute the hat on the pole.

"Why, thank you, sir," sneers the soldier.

>GO SOUTH
[Setting Middle of the square.warnings_count to 0]
[Setting wooden pole.has_been_saluted to 0]
[Moving yourself to South side of the square]
...

TIMERS (or TIMERS ON) and TIMERS OFF

This verb shows you the state of all active timers and daemons at the end of
each turn. We haven’t mentioned timers – similar to daemons – in this guide;
you might perhaps use one to explode a bomb ten turns after lighting its fuse.

16 • DEBUGGING YOUR GAME

177

TRACE (or TRACE ON), TRACE number and TRACE OFF

If you turn on this powerful verb, you’ll be able to follow the activity of the
parser – that part of the library which tries to make sense of what the player
types – and this will indeed be a wonderful moment of gratitude that
someone else took the trouble of writing it. Since the parser does so many
things, you can decide the level of detail about the displayed information
with the number parameter, which can go from 1 (minimum info) to 5
(maximum info). By default, TRACE ON and TRACE with no number sets
level 1. Trace level 1 shows the grammar line that the parser is thinking
about, while level 2 shows each individual token on each grammar line that
it tries. The information displayed with higher levels may become quite
hacky, and you are advised to use this feature only if nothing else helps.

Super-powers

GONEAR object

This action lets you teleport to the room where the object is. This is useful
when, for example, certain parts of the map are closed until the player
character solves some puzzle, or if the game map is divided in different areas.
If the room you want to visit has no objects, you can use...

GOTO number

Teleports you to the room with that internal number. Since rooms usually
have no name, you’ll have to discover the internal number of the room object
(with the command TREE, for instance).

PURLOIN object

PURLOIN works exactly as TAKE, with the nice addition that it doesn’t
matter where the object is: in another room, inside a locked container, in the
claws of the bloodthirsty dragon. More dangerously, it doesn’t matter if the
object is takeable, so you may purloin static or scenery objects. PURLOIN is
useful in a variety of situations, basically when you want to test a particular
feature of the game that requires the player character to have some objects
handy. Instead of tediously collecting them, you may simply PURLOIN
them. Be careful: it’s unwise to PURLOIN objects not meant to be taken, as
the game’s behaviour may become unpredictable.

ABSTRACT object TO object

This verb enables you to move the first object to the second object. As with
PURLOIN, both objects can be anywhere in the game. Bear in mind that the
second object should logically be a container, a supporter, or something
animate.

16 • DEBUGGING YOUR GAME

178

Infix: the harlot’s prerogative

The basic debugging verbs are fairly versatile, and have the advantage that
they’re automatically compiled into your game unless you explicitly request
otherwise. Occasionally though, you’ll meet a bug which you simply can’t catch
using regular techniques, and that’s when you might want to investigate the Infix
debugger. You’ll need to compile using the -X switch, and you’ll then be able to
monitor and modify almost all of your game’s data and objects. For instance, you
can use “;” to inspect – and change – a variable:

Inside Benny's cafe
Benny's offers the FINEST selection of pastries and sandwiches. Customers clog
the counter, where Benny himself manages to serve, cook and charge without
missing a step. At the north side of the cafe you can see a red door connecting
with the toilet.

>; deadflag
; == 0

>; deadflag = 4
; == 4

*** You have been SHAMEFULLY defeated ***

In that game you scored 0 out of a possible 2, in 2 turns.

It’s often quite maddening to realise that some variable is still false because the
Chalk puzzle didn’t work properly, and that you can’t test the Cheese puzzle until
the variable becomes true. Rather than quit, fix the Chalk, recompile, play back
to the current position and only then tackle the Cheese, how much easier to just
change the variable in mid-stream, and carry right on.

You can use ;WATCH to see an object’s values changing:

>;WATCH MID_SQUARE
; Watching object "Middle of the square" (43).

>NORTH
[Moving yourself to Middle of the square]
[Moving local people to Middle of the square]
[Moving Gessler's soldiers to Middle of the square]
[Moving your son to Middle of the square]

Middle of the square
There is less of a crush in the middle of the square; most people prefer to
keep as far away as possible from the pole which towers here, topped with that
absurd ceremonial hat. A group of soldiers stands nearby, watching everyone who
passes.
[Giving Middle of the square visited]

>NORTH
["Middle of the square".before()]
[mid_square.before()]
[Setting Middle of the square.warnings_count to 1]
A soldier bars your way.

16 • DEBUGGING YOUR GAME

179

"Oi, you, lofty; forgot yer manners, didn't you? How's about a nice salute for
the vogt's hat?"

>NORTH
["Middle of the square".before()]
[mid_square.before()]
[Setting Middle of the square.warnings_count to 2]

"I know you, Tell, yer a troublemaker, ain't you? Well, we don't want no bovver
here, so just be a good boy and salute the friggin' hat. Do it now: I ain't
gonna ask you again..."

>NORTH
["Middle of the square".before()]
[mid_square.before()]
[Setting Middle of the square.warnings_count to 3]

"OK, Herr Tell, now you're in real trouble.
...

Infix is quite complex; it’s good to have available, but it’s not really a tool for
novices. If you do use it, be careful: you get both the power and the responsibility
to use it sensibly. Remember that the changes affect only the current story file
while it’s running; to make permanent amendments, you still need to edit the
source file.

You won’t need it often, but Infix can sometimes provide quick answers to tricky
problems.

No matter what

Your game will still have some undetected bugs despite all your efforts to clean
it up. This is normal, even for experienced designers; don’t feel discouraged or
demoralised. You might find it reassuring to know that our own example games
in this guide – which certainly don't qualify as “complex programming” – were
far from perfect at the First Edition. We blush at the following report from an
extremely diligent play-tester:

I found these things when playing “Captain Fate”:
• player is able to wear clothes over the costume,
• player can change into costume in the dark unlocked bathroom without

being interrupted,
• player can drop clothes in the dark unlocked bathroom. Try REMOVE

CLOTHES. X SELF. REMOVE COSTUME. INV – X SELF says that you
are wearing the costume, but the inventory does not reflect this.

Fortunately, the code we’ve offered you in this edition takes care of those
embarrassing issues, but it might very well happen that a few more undetected
absurdities pop up from now on.

16 • DEBUGGING YOUR GAME

180

The final stage of debugging must happen elsewhere, at the hands of some wilful,
headstrong and determined beta-testers; these are the people who, if you’re
lucky, will methodically tear your game to shreds and make extensive reports of
things that don’t work reliably, things that don’t work as smoothly as they might,
things that ought to work but don’t, things that never even crossed your mind
(like, uh, dropping the costume in the dark). Once you think your game is
finished – in that it does all that you think it should, and you’ve run out of ideas
on how else to test it – look for a few beta-testers; three or four is good. The IF
community offers some beta-testing resources, or you can always ask in RAIF for
kind souls willing to have a go at your game. Remember the golden rules:

• Expect no mercy. Although it hurts, a merciless approach is what you need
at this time; much better to discover your errors and oversights now, before
you release the game more widely. And don’t forget to acknowledge your
testers’ assistance somewhere within the game.

• Never say never. If your testers suggest that the game should respond better
to an attempted action, don’t automatically respond with “No one’s going to
try that!” They already have, and will again – be grateful for your testers’
devious minds and twisted psyches. Although a normal player won’t try all
of those oddball things, every player is bound to try at least one, and their
enjoyment will be greater, the reality enhanced, if the game “understands”.

• Ask for more. Don’t treat your testers simply as validators of your
programming skills, but rather as reviewers of your storytelling abilities.
Encourage them to comment on how well the pieces fit together, and to make
suggestions – small or radical – for improvement; don’t necessarily reject
good ideas just because implementing them “will take too long”. For
example: “the scene in the Tower of London doesn’t somehow seem to
belong in an Arabian Nights game”, or “having to solve three puzzles in a
row just to discover the plate of sheep’s eyes is a little over the top”, or “this
five-room trek across the desert really is a bit dull; perhaps you could add a
quicksand or something to liven it up?”, or “the character of the eunuch in
the harem seems to be lacking in something”. That is, view the testers
collectively not as simple spell-checkers, but rather as collaborative editors
on your latest novel.

17 • *** YOU HAVE WON ***

181

17 • *** You have won ***

I might just as well have saved the labor and sweat I had put into
trying to make my reports harmless. They didn't fool the Old Man.

He gave me merry hell.
— The Continental Op in Dashiell Hammett’s Red Harvest.

ust a few final words to round things off. All that remains are the
appendices, with terse but comprehensive summaries of the Inform
language and its IF library, plus the source code and run-time
transcripts of the games we have developed here. Our “labor and

sweat” have been oriented towards making your introduction to Inform as
harmless as possible, but this probably won’t fool you for long. Although we
believe we have covered the system’s basic functionality and given you enough
grounding to feel comfortably sure-footed as you roam the designing wilderness,
there are still many techniques to be mastered and additional aspects to be learnt,
including medium and advanced features at which we have not even hinted.

Before you give us merry hell, however, be reassured that the remaining lore,
which may at times feel obscure and enigmatic, is fundamentally constructed
around the principles that you have already seen. You should now be ready to
browse through other documentation and resources without them seeming full of
inscrutable hieroglyphs; on the contrary, you’ll be able to focus on those bits you
don’t know about (which now, we hope, will be rather less abundant). Inform,
like other powerful and flexible IF design tools, is prepared to cope with the
needs of demanding authors: “I don’t like the way it handles the TAKE ALL
command; I wanna change it.” And so you can. “I’d prefer the listings of objects
organised in a prettier way.” Go right ahead. “I want to have a better social life
thanks to Inform.” No problem, but you’ll have to be one damn charming
designer. Oh, well.

Inform has been designed to let you do simple things intuitively and quickly. Left
to its own devices, it offers a wide range of default functionality, and we’ve seen
that it’s also easy to alter some of its standard behaviour. The desirable goal is for
you to reach a state of such familiarity with the system that you can concentrate
on designing your games. By “such familiarity” we are not implying that you
should know the innards of the library inside out; such people exist, but they’re
few and far between. However, once you become reasonably proficient at typing
in code, with a knowledge level similar to the one provided by this guide, a
careful look at the appropriate section of the Inform Designer’s Manual should help
you through most difficulties. Admittedly, there are problems and problems, from
the slap-on-the-head trifle to the teeth-gnashing nightmare. We advise you to put
the nightmares on hold for the time being. It may be that one day you discover
that their fangs were not as sharp as they seemed.

17 • *** YOU HAVE WON ***

182

There are many interesting topics that you could pursue next. Here are a few:

• Score: we have seen two ways of scoring a game, but you may decide that
scores have no meaning in your game. And there is yet a third built-in system
for defining “tasks” worthy of reward, from “wearing the ridiculous bonnet
at the Ambassador’s party” to “convincing the unfriendly monkey to play the
upright piano”. This technique requires a bit of knowledge about...

• Arrays: these are enumerated lists of variables. Instead of having just one
variable to play with, you can have a collection of them, indexed by number.

• Lists and inventories: there are many functions to let you arrange the way
objects are grouped and presented to the player at run-time.

• Vehicles: cars, elevators, hot-air balloons, magic carpets, spaceships – or any
other device in which the player may travel around.

• Create verbs and vocabulary: although we have already nibbled at this
concept, you can fine-tune the parser to allow for all sorts of amazing
commands (from magical utterances that trigger unfathomable spells, to
special actions that affect many objects at once).

• Changing the player: who says that the player character must be a boring
human being? Metamorphose the unsuspecting mortal into a virtual-reality
proxy, a fantastic animal, an untouchable ghost, a powerful telepath or a
telekinetic vampire. Undecided about which one? Make your game with
multiple starring characters and switch between them when you want.

• Passing of time, timed machines and events: set a timer that ticks away,
unbeknown to the player and attach it to a bomb; a door which opens only
once every ten turns; a dragon with short fuse and little patience; a marching
patrol of soldiers; a clock that ominously chimes the arrival of sunset and
doom. Change the “turns” count on the status line into minutes, or days.

• Mutable directions: north is north? Not necessarily. Change the direction
objects of the game to “forward”, “back”, and so on. You are on a ship? “fore”
and “aft”, “port” and “starboard” may be the thing for you. Enter a mirror
and have the map and all the directions reflected.

• Complex NPCs: how unpredictable can the behaviour of that impertinent
butler be? Can he talk, move, steal your possessions, poison your tea? Does
he react coherently to the player’s actions? Does he have a hidden agenda of
his own? Although NPC creation is indeed a knotty craft, it’s one worth
mastering. “Living” NPCs increase immensely the reality of your games.

• Techie features: change the status line, or the command prompt. Clear the
screen, or alter its colour; centre text upon it, and colour the text as well. Wait
for the player to press a key and then trigger some action. Display a message
one letter at a time. Add a tiny compass showing available exits at all times.

17 • *** YOU HAVE WON ***

183

Interactive fiction mixes creativity and narrative skills with coding expertise.
Usually, those games which make the biggest impact have a fair amount of both.
If you feel yourself lacking one of these qualities at present, contemplate a little
teamwork: there are IF collaboration lists on the Internet, where people offer to
lend a hand with ideas or programming (and some very good games have come
from the mixed efforts of a well-tuned collaboration). Above all, don’t forget the
importance of beta-testing, which may produce the feedback inspiring you to
turn your decent attempt into a killing machine. There’s little as obnoxious to
players as a game which is obviously under-tested. Getting those bugs out is your
responsibility; be sure to clean it as best you can, but never ever release a game
until it has been kicked around by others. And remember that beta-testers are
(almost certainly) experienced players, so their advice beyond the call of
bug-hunting is as priceless counsel as you are likely to get. Encourage them to
comment on your achievements in both programming and design.

Now: where to go, what to do? Allow us to insist one last time on the importance
of reading the Inform Designer’s Manual, an excellent book in all respects. While
you are at it, write small games, training exercises; we don’t advise you to try an
epic saga for your first scenario, but if nothing else will work for you – the Think
Big approach – don’t let us deter you. It’s a good idea to play other people’s
games, because you’ll know the average level that players may expect; check the
newsgroups for comments on good titles. Be sure around September to keep an
eye open for the Interactive Fiction Competition (http://www.ifcomp.org/), an
annual showcase for short(ish) works.

And, who knows? It might be that next year we’ll all be smashed by your entry.

Sonja and Roger

17 • *** YOU HAVE WON ***

184

APPENDIX A • HOW TO PLAY AN IF GAME

185

Appendix A • How to play an IF game

laying IF requires just a bit of instruction. All you have to do is read
the descriptions and situations that appear on the screen and then tell
the game what you’d like to happen next. Imagine that you’re saying
“I WANT TO ...”; you don’t actually type those three words, but you

do type what follows, instructing the game to do something on your behalf.
Commands usually take the form of a simple imperative sentence, with a verb
and a direct object (for example, typing EXAMINE THE KETTLE will display a
description of the kettle, TAKE KETTLE will make it one of your belongings, and
so on). If there’s more than one kettle around, you can be specific (TAKE RED
KETTLE); otherwise, the game will ask you something like “Which do you mean,
the red kettle or the rusty kettle?” Answering RED is enough in a case like this.
Some commands refer to two objects, like: PUT KETTLE ON TABLE.

To make them stand out on the page, we’re showing the words that you type in
capital letters. You can actually use upper-case or lower-case letters – it makes no
difference – and you can usually omit words like THE (though TAKE A BATH
and TAKE THE BATH may have different effects, as will TAKE A COIN and
TAKE THE COIN if there are several to choose from).

To move around, use the verb GO and one of the cardinal points: GO NORTH
will move you in the desired direction. Movement happens quite a lot, so you can
shorten that to just NORTH, and you can even use the initial(s) of the direction
in which you want to travel (easier and faster to type): N, S, E, W, NE, NW, SE
and SW. Also available are UP (U), DOWN (D) and, occasionally, IN and OUT.

There is quite an impressive stock of standard actions which can generally be
relied upon to do something, even if only to tell you that you’re wasting your
time:

You don’t have to play IF with a list like this open in front of you; the idea is that
a good game should understand whatever seems logical for you to try next.
Sometimes that will be a standard action, sometimes a verb like SALUTE or
PHOTOGRAPH which, although less common, makes perfect sense in context.

ASK DROP INVENTORY PUSH SWIM TRANSFER
BURN EAT JUMP PUT SWITCH OFF TURN
BUY EMPTY KILL READ SWITCH ON UNLOCK
CLEAN ENTER KISS SEARCH TAKE WAIT
CLIMB EXAMINE LISTEN SHOW TASTE WAVE
CLOSE EXIT LOCK SING TELL WEAR
CUT FILL LOOK SIT THINK
DIG GIVE OPEN SLEEP THROW
DISROBE GO PRAY SMELL TIE
DRINK INSERT PULL STAND TOUCH

APPENDIX A • HOW TO PLAY AN IF GAME

186

You’ll discover that usually many of these actions are fairly irrelevant. Try logical
things first (if you have a torch, BURN may be promising, while EAT probably
not). Of special interest are LOOK (or just L), to print a description of the current
location; EXAMINE (or X) object, which gives you a detailed description of the
object; INVENTORY (INV or I) lists the objects you are carrying.

You may combine some of these verbs with prepositions to expand the
possibilities: LOOK THROUGH, LOOK AT, LOOK IN, LOOK UNDER all
perform different actions. Remember that we’re mentioning only a selection of
the possible verbs; if you feel that something else ought to work, try it and see.

You can change the way the game offers descriptions of locations as you arrive
in them. The default setting is usually BRIEF, which provides you with long
descriptions only the first time you enter a new location. Some people like to
change this to VERBOSE, which always gives you long location descriptions.
Here are some other special commands and abbreviations you should know:

AGAIN (G) repeats the action you’ve just performed.
WAIT (Z) skips one turn of action while you loiter and see what happens.
QUIT ends the game.
SAVE saves your current position in the game.
RESTORE reloads a previously saved position.
RESTART starts again from the beginning.
SCORE tells you the current state of progress.
UNDO goes back one turn so that your most recent action never happened.

Often, there will be characters that you’ll have to interact with. Let’s suppose you
find your cousin Maria: you may ASK (or TELL) MARIA ABOUT something,
GIVE (or SHOW) object TO MARIA or ASK MARIA FOR object. Characters may
be willing to help you, when you can indicate your wishes with: MARIA, GO
NORTH or MARIA, TAKE THE GUN. If you are really fond of Maria, you may
want to KISS her and if she offends you beyond measure, you might like to
ATTACK her.

Once you’ve referred to an object or a character by name, you may use the
pronouns IT, HIM or HER to simplify the typing process. These pronouns will
remain set until you refer to any other object or character. If you wish to check
the current pronoun assignments, type PRONOUNS.

As a rule of the thumb, try to keep your actions simple. Most games will actually
understand long commands like TAKE ALL FROM THE BAG EXCEPT THE
GREEN PEARL THEN THROW CAMEMBERT CHEESE AT UGLY MATRON,
but such things are hard to type without mistakes. Also, you’ll find that other
inputs don’t work as well: GO BACK TO THE KITCHEN or GET NEAR THE
SINGING PIRATE or READ NEWSPAPER OVER THE SHERIFF'S
SHOULDER will all give you error messages of some kind. Understanding the
conventions of command typing is fairly intuitive and you’ll quickly master it
after a little experimentation.

APPENDIX A • HOW TO PLAY AN IF GAME

187

NOTE: we’re talking here about the core capabilities that most Inform games
provide (though much of this is equally applicable to other IF systems). Often
the designer will have extended these capabilities by defining additional
commands appropriate to the nature of the game; either you’ll be told about
these, or they’ll come naturally to mind during play. Less frequently, some
designers like to tamper with the default behaviour of the parser, the
interface, or with the way that commands work – maybe even disabling some
of the standard ones completely. When this happens, it’s common and polite
practice for the game to let you know.

APPENDIX A • HOW TO PLAY AN IF GAME

188

APPENDIX B • “HEIDI” STORY

189

Appendix B • “Heidi” story

eidi in the Forest is our first – and simplest – game. We describe it in
three chapters: “Heidi: our first Inform game” on page 27,
“Reviewing the basics” on page 41 and “Heidi revisited” on page 51.
Here is a run-time transcript, and then the original and extended

source files.

Transcript of play
Heidi
A simple Inform example
by Roger Firth and Sonja Kesserich.
Release 1 / Serial number 020827 / Inform v6.21 Library 6/10 SD

In front of a cottage
You stand outside a cottage. The forest stretches east.

>VERBOSE
Heidi is now in its "verbose" mode, which always gives long descriptions of
locations (even if you've been there before).

>GO EAST

Deep in the forest
Through the dense foliage, you glimpse a building to the west. A track heads to the
northeast.

You can see a baby bird here.

>EXAMINE THE BIRD
Too young to fly, the nestling tweets helplessly.

>TAKE BIRD
Taken.

>NE

A forest clearing
A tall sycamore stands in the middle of this clearing. The path winds southwest
through the trees.

You can see a bird's nest (which is empty) here.

>PUT BIRD IN NEST
You put the baby bird into the bird's nest.

>EXAMINE THE NEST
The nest is carefully woven of twigs and moss.

>TAKE NEST
Taken.

>UP

APPENDIX B • “HEIDI” STORY

190

At the top of the tree
You cling precariously to the trunk.

You can see a wide firm bough here.

>PUT NEST ON BRANCH
You put the bird's nest on the wide firm bough.

*** You have won ***

In that game you scored 0 out of a possible 0, in 10 turns.

Would you like to RESTART, RESTORE a saved game or QUIT?
> QUIT

Game source code – original version
!===
Constant Story "Heidi";
Constant Headline

"^A simple Inform example
 ^by Roger Firth and Sonja Kesserich.^";

Constant MAX_CARRIED 1;

Include "Parser";
Include "VerbLib";

!===
! The game objects

Object before_cottage "In front of a cottage"
with description

"You stand outside a cottage. The forest stretches east.",
e_to forest,

has light;

Object forest "Deep in the forest"
with description

"Through the dense foliage, you glimpse a building to the west.
 A track heads to the northeast.",

w_to before_cottage,
ne_to clearing,

has light;

Object bird "baby bird" forest
with description "Too young to fly, the nestling tweets helplessly.",

name 'baby' 'bird' 'nestling',
has ;

Object clearing "A forest clearing"
with description

"A tall sycamore stands in the middle of this clearing.
 The path winds southwest through the trees.",

sw_to forest,
u_to top_of_tree,

has light;

APPENDIX B • “HEIDI” STORY

191

Object nest "bird's nest" clearing
with description "The nest is carefully woven of twigs and moss.",

name 'bird^s' 'nest' 'twigs' 'moss',
has container open;

Object tree "tall sycamore tree" clearing
with description

"Standing proud in the middle of the clearing,
 the stout tree looks easy to climb.",

name 'tall' 'sycamore' 'tree' 'stout' 'proud',
has scenery;

Object top_of_tree "At the top of the tree"
with description "You cling precariously to the trunk.",

d_to clearing,
has light;

Object branch "wide firm bough" top_of_tree
with description "It's flat enough to support a small object.",

name 'wide' 'firm' 'flat' 'bough' 'branch',
each_turn [; if (nest in branch) deadflag = 2;],

has static supporter;

!===
! Entry point routines

[Initialise; location = before_cottage;];

!===
! Standard and extended grammar

Include "Grammar";

!===

APPENDIX B • “HEIDI” STORY

192

Game source code – revisited
!===
Constant Story "Heidi";
Constant Headline

"^A simple Inform example
 ^by Roger Firth and Sonja Kesserich.^";

Constant MAX_CARRIED 1;

Include "Parser";
Include "VerbLib";

!===
! The game objects

Object before_cottage "In front of a cottage"
with description

"You stand outside a cottage. The forest stretches east.",
e_to forest,
in_to "It's such a lovely day -- much too nice to go inside.",
cant_go "The only path lies to the east.",

has light;

Object cottage "tiny cottage" before_cottage
with description "It's small and simple, but you're very happy here.",

name 'tiny' 'cottage' 'home' 'house' 'hut' 'shed' 'hovel',
before [; Enter:

print_ret "It's such a lovely day -- much too nice to go inside.";
],

has scenery;

Object forest "Deep in the forest"
with description

"Through the dense foliage, you glimpse a building to the west.
 A track heads to the northeast.",

w_to before_cottage,
ne_to clearing,

has light;

Object bird "baby bird" forest
with description "Too young to fly, the nestling tweets helplessly.",

name 'baby' 'bird' 'nestling',
before [; Listen:

print "It sounds scared and in need of assistance.^";
return true;

],
has ;

Object clearing "A forest clearing"
with description

"A tall sycamore stands in the middle of this clearing.
 The path winds southwest through the trees.",

sw_to forest,
u_to top_of_tree,

has light;

APPENDIX B • “HEIDI” STORY

193

Object nest "bird's nest" clearing
with description "The nest is carefully woven of twigs and moss.",

name 'bird^s' 'nest' 'twigs' 'moss',
has container open;

Object tree "tall sycamore tree" clearing
with description

"Standing proud in the middle of the clearing,
 the stout tree looks easy to climb.",

name 'tall' 'sycamore' 'tree' 'stout' 'proud',
before [; Climb:

PlayerTo(top_of_tree);
return true;

],
has scenery;

Object top_of_tree "At the top of the tree"
with description "You cling precariously to the trunk.",

d_to clearing,
after [; Drop:

move noun to clearing;
return false;

],
has light;

Object branch "wide firm bough" top_of_tree
with description "It's flat enough to support a small object.",

name 'wide' 'firm' 'flat' 'bough' 'branch',
each_turn [; if (bird in nest && nest in branch) deadflag = 2;],

has static supporter;

!===
! Entry point routines

[Initialise; location = before_cottage;];

!===
! Standard and extended grammar

Include "Grammar";

!===

APPENDIX B • “HEIDI” STORY

194

APPENDIX C • “WILLIAM TELL” STORY

195

Appendix C • “William Tell” story

illiam Tell, our second game, is also very straightforward. See
“William Tell: a tale is born” on page 61, “William Tell: the early
years” on page 69, “William Tell: in his prime” on page 81 and
“William Tell: the end is nigh” on page 91.

Transcript of play
The place: Altdorf, in the Swiss canton of Uri. The year is 1307, at which time
Switzerland is under rule by the Emperor Albert of Habsburg. His local governor --
the vogt -- is the bullying Hermann Gessler, who has placed his hat atop a wooden
pole in the centre of the town square; everybody who passes through the square must
bow to this hated symbol of imperial might.

You have come from your cottage high in the mountains, accompanied by your younger
son, to purchase provisions. You are a proud and independent man, a hunter and
guide, renowned both for your skill as an archer and, perhaps unwisely (for his
soldiers are everywhere), for failing to hide your dislike of the vogt.

It's market-day: the town is packed with people from the surrounding villages and
settlements.

William Tell
A simple Inform example
by Roger Firth and Sonja Kesserich.
Release 2 / Serial number 020827 / Inform v6.21 Library 6/10 SD

A street in Altdorf
The narrow street runs north towards the town square. Local folk are pouring into
the town through the gate to the south, shouting greetings, offering produce for
sale, exchanging news, enquiring with exaggerated disbelief about the prices of the
goods displayed by merchants whose stalls make progress even more difficult.

"Stay close to me, son," you say, "or you'll get lost among all these people."

>EXAMINE YOUR SON
A quiet, blond lad of eight summers, he's fast learning the ways of mountain folk.

>GO NORTH

Further along the street
People are still pushing and shoving their way from the southern gate towards the
town square, just a little further north. You recognise the owner of a fruit and
vegetable stall.

Helga pauses from sorting potatoes to give you a cheery wave.

"Hello, Wilhelm, it's a fine day for trade! Is this young Walter? My, how he's
grown. Here's an apple for him -- tell him to mind that scabby part, but the rest's
good enough. How's Frau Tell? Give her my best wishes."

APPENDIX C • “WILLIAM TELL” STORY

196

>INVENTORY
You are carrying:

an apple
a quiver (being worn)

three arrows
a bow

>TALK TO HELGA
You warmly thank Helga for the apple.

[Your score has just gone up by one point.]

>GIVE THE APPLE TO WALTER
"Thank you, Papa."

[Your score has just gone up by one point.]

>NORTH

South side of the square
The narrow street to the south has opened onto the town square, and resumes at the
far side of this cobbled meeting place. To continue along the street towards your
destination -- Johansson's tannery -- you must walk north across the square, in the
middle of which you see Gessler's hat set on that loathsome pole. If you go on,
there's no way you can avoid passing it. Imperial soldiers jostle rudely through
the throng, pushing, kicking and swearing loudly.

>EXAMINE THE SOLDIERS
They're uncouth, violent men, not from around here.

>EXAMINE HAT
You're too far away to see any detail.

>N

Middle of the square
There is less of a crush in the middle of the square; most people prefer to keep
as far away as possible from the pole which towers here, topped with that absurd
ceremonial hat. A group of soldiers stands nearby, watching everyone who passes.

>X HAT
The pole, the trunk of a small pine some few inches in diameter, stands about nine
or ten feet high. Set carefully on top is Gessler's ludicrous black and red leather
hat, with a widely curving brim and a cluster of dyed goose feathers.

>N
A soldier bars your way.

"Oi, you, lofty; forgot yer manners, didn't you? How's about a nice salute for the
vogt's hat?"

>N

"I know you, Tell, yer a troublemaker, ain't you? Well, we don't want no bovver
here, so just be a good boy and salute the friggin' hat. Do it now: I ain't gonna
ask you again..."

APPENDIX C • “WILLIAM TELL” STORY

197

>N

"OK, Herr Tell, now you're in real trouble. I asked you nice, but you was too proud
and too stupid. I think it's time that the vogt had a little word with you."

And with that the soldiers seize you and Walter and, while the sergeant hurries off
to fetch Gessler, the rest drag you roughly towards the old lime tree growing in
the marketplace.

Marketplace near the square
Altdorf's marketplace, close by the town square, has been hastily cleared of stalls.
A troop of soldiers has pushed back the crowd to leave a clear space in front of
the lime tree, which has been growing here for as long as anybody can remember.
Usually it provides shade for the old men of the town, who gather below to gossip,
watch the girls, and play cards. Today, though, it stands alone... apart, that is,
from Walter, who has been lashed to the trunk. About forty yards away, you are
restrained by two of the vogt's men.

Gessler is watching from a safe distance, a sneer on his face.

"It appears that you need to be taught a lesson, fool. Nobody shall pass through
the square without paying homage to His Imperial Highness Albert; nobody, hear me?
I could have you beheaded for treason, but I'm going to be lenient. If you should
be so foolish again, you can expect no mercy, but this time, I'll let you go free...
just as soon as you demonstrate your archery skills by hitting this apple from where
you stand. That shouldn't prove too difficult; here, sergeant, catch. Balance it
on the little bastard's head."

>X GESSLER
Short, stout but with a thin, mean face, Gessler relishes the power he holds over
the local community.

>X WALTER
He stares at you, trying to appear brave and remain still. His arms are pulled back
and tied behind the trunk, and the apple nestles amid his blond hair.

>X APPLE
At this distance you can barely see it.

>SHOOT THE APPLE
Slowly and steadily, you place an arrow in the bow, draw back the string, and take
aim with more care than ever in your life. Holding your breath, unblinking, fearful,
you release the arrow. It flies across the square towards your son, and drives the
apple against the trunk of the tree. The crowd erupts with joy; Gessler looks
distinctly disappointed.

*** You have won ***

In that game you scored 3 out of a possible 4, in 17 turns.

Would you like to RESTART, RESTORE a saved game or QUIT?
> QUIT

APPENDIX C • “WILLIAM TELL” STORY

198

Game source code
!==
Constant Story "William Tell";
Constant Headline

"^A simple Inform example
 ^by Roger Firth and Sonja Kesserich.^";

Release 2; Serial "020827"; ! for keeping track of public releases

Constant MAX_SCORE = 4;

Include "Parser";
Include "VerbLib";

!==
! Object classes

Class Room
has light;

Class Prop
with before [;

Examine: return false;
default:

print_ret "You don't need to worry about ", (the) self, ".";
],

has scenery;

Class Furniture
with before [;

Take,Pull,Push,PushDir:
print_ret (The) self, " is too heavy for that.";

],
has static supporter;

Class Arrow
with name 'arrow' 'arrows//p',

article "an",
plural "arrows",
description "Just like all your other arrows -- sharp and true.",
before [;

Drop: print_ret "Much too dangerous to leave lying around.";
];

Class NPC
with life [;

Answer,Ask,Order,Tell:
print_ret "Just use T[ALK] [TO ", (the) self, "].";

],
has animate;

APPENDIX C • “WILLIAM TELL” STORY

199

!==
! The game objects

Room street "A street in Altdorf"
with description [;

print "The narrow street runs north towards the town square.
Local folk are pouring into the town through the gate to the
south, shouting greetings, offering produce for sale,
exchanging news, enquiring with exaggerated disbelief about
the prices of the goods displayed by merchants whose stalls
make progress even more difficult.^";

if (self hasnt visited)
print "^~Stay close to me, son,~ you say,

~or you'll get lost among all these people.~^";
],
n_to below_square,
s_to

"The crowd, pressing north towards the square,
 makes that impossible.";

Prop "south gate" street
with name 'south' 'southern' 'wooden' 'gate',

description "The large wooden gate in the town walls is wide open.";

Prop "assorted stalls"
with name 'assorted' 'stalls',

description "Food, clothing, mountain gear; the usual stuff.",
found_in street below_square,

has pluralname;

Prop "merchants"
with name 'merchant' 'merchants' 'trader' 'traders',

description
"A few crooks, but mostly decent traders touting their wares
with raucous overstatement.",

found_in street below_square,
has animate pluralname;

Prop "local people"
with name 'people' 'folk' 'local' 'crowd',

description "Mountain folk, just like yourself.",
found_in [; return true;],

has animate pluralname;

APPENDIX C • “WILLIAM TELL” STORY

200

!--

Room below_square "Further along the street"
with description

"People are still pushing and shoving their way from the southern
 gate towards the town square, just a little further north.
 You recognise the owner of a fruit and vegetable stall.",

n_to south_square,
s_to street;

Furniture stall "fruit and vegetable stall" below_square
with name 'fruit' 'veg' 'vegetable' 'stall' 'table',

description
"It's really only a small table, with a big heap of potatoes,
 some carrots and turnips, and a few apples.",

before [; Search: <<Examine self>>;],
has scenery;

Prop "potatoes" below_square
with name 'potato' 'potatoes' 'spuds',

description
"Must be a particularly early variety... by some 300 years!",

has pluralname;

Prop "fruit and vegetables" below_square
with name 'carrot' 'carrots' 'turnip' 'turnips' 'apples' 'vegetables',

description "Fine locally grown produce.",
has pluralname;

NPC stallholder "Helga" below_square
with name 'stallholder' 'greengrocer' 'monger' 'shopkeeper' 'merchant'

'owner' 'Helga' 'dress' 'scarf' 'headscarf',
description

"Helga is a plump, cheerful woman,
 concealed beneath a shapeless dress and a spotted headscarf.",

initial [;
print "Helga pauses from sorting potatoes

to give you a cheery wave.^";
if (location hasnt visited) {

move apple to player;
print "^~Hello, Wilhelm, it's a fine day for trade! Is this

young Walter? My, how he's grown. Here's an apple for him
-- tell him to mind that scabby part, but the rest's good
enough. How's Frau Tell? Give her my best wishes.~^";

}
],
times_spoken_to 0, ! for counting the conversation topics
life [;

Kiss: print_ret "~Ooh, you saucy thing!~";
Talk: self.times_spoken_to = self.times_spoken_to + 1;

switch (self.times_spoken_to) {
1: score = score + 1;

print_ret "You warmly thank Helga for the apple.";
2: score = score + 1;

print_ret "~See you again soon.~";
default: return false;

}
],

has female proper;

APPENDIX C • “WILLIAM TELL” STORY

201

!--

Room south_square "South side of the square"
with description

"The narrow street to the south has opened onto the town square,
 and resumes at the far side of this cobbled meeting place.
 To continue along the street towards your destination --
 Johansson's tannery -- you must walk north across the square,
 in the middle of which you see Gessler's hat set on that
 loathsome pole. If you go on, there's no way you can avoid
 passing it. Imperial soldiers jostle rudely through the throng,
 pushing, kicking and swearing loudly.",

n_to mid_square,
s_to below_square;

Prop "pole"
with name 'wooden' 'pole',

description "You're too far away to see any detail.",
found_in south_square north_square;

Prop "hat"
with name 'hat',

description "You're too far away to see any detail.",
found_in south_square north_square;

Prop "Gessler's soldiers"
with name 'soldier' 'soldiers',

description "They're uncouth, violent men, not from around here.",
before [;

FireAt: print_ret "You're outnumbered many times.";
Talk: print_ret "Such scum are beneath your contempt.";

],
found_in south_square mid_square north_square marketplace,

has animate pluralname proper;

!--

Room mid_square "Middle of the square"
with description

"There is less of a crush in the middle of the square; most
 people prefer to keep as far away as possible from the pole
 which towers here, topped with that absurd ceremonial hat. A
 group of soldiers stands nearby, watching everyone who passes.",

n_to north_square,
s_to south_square,
warnings_count 0, ! for counting the soldier's warnings
before [; Go:

if (noun == s_obj) {
self.warnings_count = 0;
pole.has_been_saluted = false;

}
if (noun == n_obj) {

if (pole.has_been_saluted == true) {
print "^~Be sure to have a nice day.~^";
return false;

} ! end of (pole has_been_saluted)
else {

self.warnings_count = self.warnings_count + 1;
switch (self.warnings_count) {
1: print_ret "A soldier bars your way. ^^

APPENDIX C • “WILLIAM TELL” STORY

202

~Oi, you, lofty; forgot yer manners, didn't you?
How's about a nice salute for the vogt's hat?~";

2: print_ret "^~I know you, Tell, yer a troublemaker,
ain't you? Well, we don't want no bovver here,
so just be a good boy and salute the friggin'
hat. Do it now: I ain't gonna ask you again...~";

default:
print "^~OK, ";
style underline; print "Herr"; style roman;
print " Tell, now you're in real trouble. I asked you

nice, but you was too proud and too stupid. I
think it's time that the vogt had a little word
with you.~
^^
And with that the soldiers seize you and Walter
and, while the sergeant hurries off to fetch
Gessler, the rest drag you roughly towards the
old lime tree growing in the marketplace.^";

move apple to son;
PlayerTo(marketplace);
return true;

} ! end of switch
} ! end of (pole has_NOT_been_saluted)

} ! end of (noun == n_obj)
];

Furniture pole "wooden pole" mid_square
with name 'wooden' 'pole' 'pine' 'hat' 'black' 'red' 'brim' 'feathers',

description
"The pole, the trunk of a small pine some few inches in diameter,
 stands about nine or ten feet high. Set carefully on top is
 Gessler's ludicrous black and red leather hat, with a widely
 curving brim and a cluster of dyed goose feathers.",

has_been_saluted false,
before [;

Salute:
self.has_been_saluted = true;
print_ret "You salute the hat on the pole. ^^

~Why, thank you, sir,~ sneers the soldier.";
],

has scenery;

!--

Room north_square "North side of the square"
with description

"A narrow street leads north from the cobbled square. In its
 centre, a little way south, you catch a last glimpse of the pole
 and hat.",

n_to [;
deadflag = 3;
print_ret "With Walter at your side, you leave the square by the

north street, heading for Johansson's tannery.";
],
s_to "You hardly feel like going through all that again.";

APPENDIX C • “WILLIAM TELL” STORY

203

!--

Room marketplace "Marketplace near the square"
with description

"Altdorf's marketplace, close by the town square, has been hastily
 cleared of stalls. A troop of soldiers has pushed back the crowd
 to leave a clear space in front of the lime tree, which has been
 growing here for as long as anybody can remember. Usually it
 provides shade for the old men of the town, who gather below to
 gossip, watch the girls, and play cards. Today, though, it
 stands alone... apart, that is, from Walter, who has been lashed
 to the trunk. About forty yards away, you are restrained by two
 of the vogt's men.",

cant_go "What? And leave your son tied up here?";

Object tree "lime tree" marketplace
with name 'lime' 'tree',

description "It's just a large tree.",
before [; FireAt:

if (BowOrArrow(second)) {
deadflag = 3;
print_ret "Your hand shakes a little, and your arrow flies

high, hitting the trunk a few inches above Walter's
head.";

}
return true;

],
has scenery;

NPC governor "governor" marketplace
with name 'governor' 'vogt' 'Hermann' 'Gessler',

description
"Short, stout but with a thin, mean face, Gessler relishes the
 power he holds over the local community.",

initial [;
print "Gessler is watching from a safe distance,

a sneer on his face.^";
if (location hasnt visited)

print "^~It appears that you need to be taught a lesson,
fool. Nobody shall pass through the square without paying
homage to His Imperial Highness Albert; nobody, hear me?
I could have you beheaded for treason, but I'm going to
be lenient. If you should be so foolish again, you can
expect no mercy, but this time, I'll let you go free...
just as soon as you demonstrate your archery skills by
hitting this apple from where you stand. That shouldn't
prove too difficult; here, sergeant, catch. Balance it on
the little bastard's head.~^";

],
life [;

Talk: print_ret "You cannot bring yourself to speak to him.";
],

APPENDIX C • “WILLIAM TELL” STORY

204

before [; FireAt:
if (BowOrArrow(second)) {

deadflag = 3;
print_ret "Before the startled soldiers can react, you turn

and fire at Gessler; your arrow pierces his heart,
and he dies messily. A gasp, and then a cheer,
goes up from the crowd.";

}
return true;

],
has male;

!==
! The player's possessions

Object bow "bow"
with name 'bow',

description "Your trusty yew bow, strung with flax.",
before [;

Drop,Give: print_ret "You're never without your trusty bow.";
]

has clothing;

Object quiver "quiver"
with name 'quiver',

description
"Made of goatskin, it usually hangs over your left shoulder.",

before [;
Drop,Give:

print_ret "But it was a present from Hedwig, your wife.";
],

has container open clothing;

Arrow "arrow" quiver;
Arrow "arrow" quiver;
Arrow "arrow" quiver;

NPC son "your son"
with name 'son' 'your' 'boy' 'lad' 'Walter',

description [;
if (location == marketplace)

print_ret "He stares at you, trying to appear brave and
remain still. His arms are pulled back and tied behind
the trunk, and the apple nestles amid his blond hair.";

else
print_ret "A quiet, blond lad of eight summers, he's fast

learning the ways of mountain folk.";
],
life [;

Give:
score = score + 1;
move noun to self;
print_ret "~Thank you, Papa.~";

Talk:
if (location == marketplace)

print_ret "~Stay calm, my son, and trust in God.~";
else

print_ret "You point out a few interesting sights.";
],

APPENDIX C • “WILLIAM TELL” STORY

205

before [;
Examine,Listen,Salute,Talk: return false;
FireAt:

if (location == marketplace) {
if (BowOrArrow(second)) {

deadflag = 3;
print_ret "Oops! Surely you didn't mean to do that?";

}
return true;

}
else

return false;
default:

if (location == marketplace)
print_ret "Your guards won't permit it.";

else
return false;

],
found_in [; return true;],

has male proper scenery transparent;

Object apple "apple"
with name 'apple',

description [;
if (location == marketplace)

print_ret "At this distance you can barely see it.";
else

print_ret "The apple is blotchy green and brown.";
],
before [;

Drop: print_ret "An apple is worth quite a bit --
better hang on to it.";

Eat: print_ret "Helga intended it for Walter...";
FireAt:

if (location == marketplace) {
if (BowOrArrow(second)) {

score = score + 1;
deadflag = 2;
print_ret "Slowly and steadily, you place an arrow in

the bow, draw back the string, and take aim with
more care than ever in your life. Holding your
breath, unblinking, fearful, you release the
arrow. It flies across the square towards your
son, and drives the apple against the trunk of
the tree. The crowd erupts with joy;
Gessler looks distinctly disappointed.";

}
return true;

}
else

return false;
];

APPENDIX C • “WILLIAM TELL” STORY

206

!==
! Entry point routines

[Initialise;
location = street;
lookmode = 2; ! like the VERBOSE command
move bow to player;
move quiver to player; give quiver worn;
player.description =

"You wear the traditional clothing of a Swiss mountaineer.";
print_ret "^^

The place: Altdorf, in the Swiss canton of Uri. The year is 1307,
at which time Switzerland is under rule by the Emperor Albert of
Habsburg. His local governor -- the vogt -- is the bullying
Hermann Gessler, who has placed his hat atop a wooden pole in
the centre of the town square; everybody who passes through the
square must bow to this hated symbol of imperial might.
^^
You have come from your cottage high in the mountains,
accompanied by your younger son, to purchase provisions. You are
a proud and independent man, a hunter and guide, renowned both
for your skill as an archer and, perhaps unwisely (for his soldiers
are everywhere), for failing to hide your dislike of the vogt.
^^
It's market-day: the town is packed with people from the
surrounding villages and settlements.^";

];

[DeathMessage; print "You have screwed up a favourite folk story";];

!==
! Standard and extended grammar

Include "Grammar";

!--

[TalkSub;
if (noun == player) print_ret "Nothing you hear surprises you.";
if (RunLife(noun,##Talk) ~= false) return; ! consult life[; Talk:]
print_ret "At the moment, you can't think of anything to say.";

];

Verb 'talk' 't//' 'converse' 'chat' 'gossip'
* 'to'/'with' creature -> Talk
* creature -> Talk;

APPENDIX C • “WILLIAM TELL” STORY

207

!--
[BowOrArrow o;

if (o == bow or nothing || o ofclass Arrow) return true;
print "That's an unlikely weapon, isn't it?^";
return false;

];

[FireAtSub;
if (noun == nothing)

print_ret "What, just fire off an arrow at random?";
if (BowOrArrow(second))

print_ret "Pretty dangerous, don't you think?";
];

Verb 'fire' 'shoot' 'aim'
* -> FireAt
* noun -> FireAt
* 'at' noun -> FireAt
* 'at' noun 'with' noun -> FireAt
* noun 'with' noun -> FireAt
* noun 'at' noun -> FireAt reverse;

!--

[SaluteSub;
if (noun has animate) print_ret (The) noun, " acknowledges you.";
print_ret (The) noun, " takes no notice.";

];

Verb 'bow' 'nod' 'kowtow' 'genuflect'
* 'at'/'to'/'towards' noun -> Salute;

Verb 'salute' 'greet' 'acknowledge'
* noun -> Salute;

Extend 'give'
* 'homage' 'to' noun -> Salute;

Extend 'wave'
* 'at' noun -> Salute;

!--

[UntieSub; print_ret "You really shouldn't try that.";];

Verb 'untie' 'unfasten' 'unfix' 'free' 'release'
* noun -> Untie;

!==

APPENDIX C • “WILLIAM TELL” STORY

208

Compile-as-you-go

Your understanding of how the “William Tell” game works will be considerably
enhanced if you type in the code for yourself as you read through the guide.
However, it takes us four chapters to describe the game, which isn’t complete and
playable until the end of Chapter 9. Even if you make no mistakes in your typing,
the game won’t compile without errors before that point, because of references
in earlier chapters to objects which aren’t presented until later chapters (for
example, Chapter 6 mentions the bow and quiver objects, but we don’t define
them until Chapter 7). This is a bit of a nuisance, because as a general rule we
advise you to compile frequently – more or less after every change you make to
a game – in order to detect syntax and spelling mistakes as soon as possible.

Fortunately, there’s a fairly easy way round the difficulty, though it involves a
little bit of cheating. The trick is temporarily to add minimal definitions – often
called “stubs” – of the objects whose full definitions have yet to be provided.

For example, if you try to compile the game in the state that it’s reached by the
end of Chapter 6, you’ll get this:

Tell.inf(16): Warning: Class "Room" declared but not used
Tell.inf(19): Warning: Class "Prop" declared but not used
Tell.inf(27): Warning: Class "Furniture" declared but not used
Tell.inf(44): Error: No such constant as "street"
Tell.inf(46): Error: No such constant as "bow"
Tell.inf(47): Error: No such constant as "quiver"
Compiled with 3 errors and 3 warnings

However, by adding these lines to the end of your game file:

! ===
! TEMPORARY DEFINITIONS NEEDED TO COMPILE AT THE END OF CHAPTER 6

Room street;
Object bow;
Object quiver;

a compilation should now give only this:

Tell.inf(19): Warning: Class "Prop" declared but not used
Tell.inf(27): Warning: Class "Furniture" declared but not used
Compiled with 2 warnings

That’s a lot better. It’s not worth worrying about those warnings, since it’s easy to
understand where they come from; anyway, they’ll go away shortly. More
important, there are no errors, which means that you’ve probably not made any
major typing mistakes. It also means that the compiler has created a story file, so
you can try “playing” the game. If you do, though, you’ll get this:

T
Y
P
E

APPENDIX C • “WILLIAM TELL” STORY

209

William Tell
A simple Inform example
by Roger Firth and Sonja Kesserich.
Release 2 / Serial number 020827 / Inform v6.21 Library 6/10 SD

(street)
** Library error 11 (27,0) **
** The room "(street)" has no "description" property **

>

Whoops! We’ve fallen foul of Inform’s rule saying that every room must have a
description property, to be displayed by the interpreter when you enter that
room. Our street stub hasn’t got a description, so although the game compiles
successfully, it still causes an error to be reported at run-time.

The best way round this is to extend the definition of our Room class, thus:

Class Room
with description "UNDER CONSTRUCTION",
has light;

By doing this, we ensure that every room has a description of some form; normally
we’d override this default value with something meaningful – “The narrow street
runs north towards the town square...” and so on – by including a description
property in the object’s definition. However, in a stub object used only for
testing, a default description is sufficient (and less trouble):

William Tell
A simple Inform example
by Roger Firth and Sonja Kesserich.
Release 2 / Serial number 020827 / Inform v6.21 Library 6/10 SD

(street)
UNDER CONSTRUCTION

>INVENTORY
You are carrying:
 a (quiver) (being worn)
 a (bow)

>EXAMINE QUIVER
You can't see any such thing.

>

You’ll notice a couple of interesting points. Because we didn’t supply external
names with our street, bow and quiver stubs, the compiler has provided some for
us – (street), (bow) and (quiver) – simply by adding parentheses around the
internal IDs which we used. And, because our bow and quiver stubs have no name
properties, we can’t actually refer to those objects when playing the game.
Neither of these points would be acceptable in a finished game, but for testing
purposes at this early stage – they’ll do.

So far, we’ve seen how the addition of three temporary object definitions enables
us to compile the incomplete game, in its state at the end of Chapter 6. But once

T
Y
P
E

APPENDIX C • “WILLIAM TELL” STORY

210

we reach the end of Chapter 7, things have moved on, and we now need a
different set of stub objects. For a test compilation at this point, remove the
previous set of stubs, and instead add these – south_square and apple objects, and
a dummy action handler to satisfy the Talk action in Helga’s life property:

! ===
! TEMPORARY DEFINITIONS NEEDED TO COMPILE AT THE END OF CHAPTER 7

Room south_square;
Object apple;

[TalkSub;];

Similarly, at the end of Chapter 8, replace the previous stubs by these if you wish
to check that the game compiles:

! ===
! TEMPORARY DEFINITIONS NEEDED TO COMPILE AT THE END OF CHAPTER 8

Room marketplace;
Object apple;
NPC son;

[TalkSub;];
[FireAtSub;];
[SaluteSub;];

Finally, by the end of Chapter 9 the game is complete, so you can delete the stubs
altogether.

Used with care, this technique of creating a few minimal stub objects can be
convenient – it enables you to “sketch” a portion of your game in outline form,
and to compile and test the game in that state, without needing to create complete
object definitions. However, you’ve got very little interaction with your stubs, so
don’t create too many of them. And of course, never forget to flesh out the stubs
into full definitions as soon as you can.

T
Y
P
E

T
Y
P
E

APPENDIX D • “CAPTAIN FATE” STORY

211

Appendix D • “Captain Fate” story

aptain Fate is our third and final game; it’s a little longer and more
complex than its predecessors. See “Captain Fate: take 1” on page 105,
“Captain Fate: take 2” on page 115, “Captain Fate: take 3” on page 127
and “Captain Fate: the final cut” on page 137.

Transcript of play
Impersonating mild mannered John Covarth, assistant help boy at an insignificant
drugstore, you suddenly STOP when your acute hearing deciphers a stray radio call
from the POLICE. There's some MADMAN attacking the population in Granary Park! You
must change into your Captain FATE costume fast...!

Captain Fate
A simple Inform example
by Roger Firth and Sonja Kesserich.
Release 2 / Serial number 020827 / Inform v6.21 Library 6/10 SD

On the street
On one side -- which your HEIGHTENED sense of direction indicates is NORTH --
there's an open cafe now serving lunch. To the south, you can see a phone booth.

>EXAMINE ME
In your secret identity's outfit, you manage most efficaciously to look like a
two-cent loser, a good-for-nothing wimp.

>INVENTORY
You are carrying:

your clothes (being worn)
your costume

>X COSTUME
STATE OF THE ART manufacture, from chemically reinforced 100% COTTON-lastic(tm).

>REMOVE CLOTHES
In the middle of the street? That would be a PUBLIC SCANDAL, to say nothing of
revealing your secret identity.

>X BOOTH
It's one of the old picturesque models, a red cabin with room for one caller.

>ENTER IT
With implausible celerity, you dive inside the phone booth.

>REMOVE CLOTHES
Lacking Superman's super-speed, you realise that it would be awkward to change in
plain view of the passing pedestrians.

>OUT
You get out of the phone booth.

On the street
On one side -- which your HEIGHTENED sense of direction indicates is NORTH --
there's an open cafe now serving lunch. To the south, you can see a phone booth.

APPENDIX D • “CAPTAIN FATE” STORY

212

>X CAFE
The town's favourite for a quick snack, Benny's cafe has a 50's ROCKETSHIP look.

>ENTER CAFE
With an impressive mixture of hurry and nonchalance you step into the open cafe.

Inside Benny's cafe
Benny's offers the FINEST selection of pastries and sandwiches. Customers clog the
counter, where Benny himself manages to serve, cook and charge without missing a
step. At the north side of the cafe you can see a red door connecting with the
toilet.

>OPEN DOOR
It seems to be locked.

>X IT
A red door with the unequivocal black man-woman silhouettes marking the entrance
to hygienic facilities. There is a scribbled note stuck on its surface.

>READ THE NOTE
You apply your ENHANCED ULTRAFREQUENCY vision to the note and squint in
concentration, giving up only when you see the borders of the note begin to blacken
under the incredible intensity of your burning stare. You reflect once more how
helpful it would've been if you'd ever learnt to read.

A kind old lady passes by and explains: "You have to ask Benny for the key, at the
counter."

You turn quickly and begin, "Oh, I KNOW that, but..."

"My pleasure, son," says the lady, as she exits the cafe.

>X BENNY
A deceptively FAT man of uncanny agility, Benny entertains his customers crushing
coconuts against his forehead when the mood strikes him.

>ASK BENNY FOR THE KEY
"Toilet is only fer customers," he grumbles, looking pointedly at a menu board
behind him.

>X MENU
The menu board lists Benny's food and drinks, along with their prices. Too bad
you've never learnt how to read, but luckily there is a picture of a big cup of
coffee among the incomprehensible writing.

>BENNY,GIVE ME A COFFEE
With two gracious steps, Benny places his world-famous Cappuccino in front of you.

>BENNY,GIVE ME THE KEY
Benny tosses the key to the rest rooms on the counter, where you grab it with a
dextrous and precise movement of your HYPER-AGILE hand.

>UNLOCK DOOR WITH KEY
You unlock the door to the toilet and open it.

>N

Unisex toilet
A surprisingly CLEAN square room covered with glazed-ceramic tiles, featuring

APPENDIX D • “CAPTAIN FATE” STORY

213

little more than a lavatory and a light switch. The only exit is south, through the
door and into the cafe.

[Your score has just gone up by one point.]

>CLOSE DOOR
You close the door to the cafe.

It is now pitch dark in here!

>SWITCH ON LIGHT
You turn on the light in the toilet.

Unisex toilet
A surprisingly CLEAN square room covered with glazed-ceramic tiles, featuring
little more than a lavatory and a light switch. The only exit is south, through the
door and into the cafe.

>LOCK DOOR WITH KEY
You lock the door to the cafe.

>X LAVATORY
The latest user CIVILLY flushed it after use, but failed to pick up the VALUABLE
coin that fell from his pants.

>TAKE COIN
You crouch into the SLEEPING DRAGON position and deftly, with PARAMOUNT STEALTH,
you pocket the lost coin.

[Your score has just gone up by one point.]

>REMOVE CLOTHES
You quickly remove your street clothes and bundle them up together into an INFRA
MINUSCULE pack ready for easy transportation. Then you unfold your
INVULNERABLE-COTTON costume and turn into Captain FATE, defender of free will,
adversary of tyranny!

>UNLOCK DOOR WITH KEY
You unlock the door to the cafe and open it.

>S

Inside Benny's cafe
Benny's offers the FINEST selection of pastries and sandwiches. Customers clog the
counter, where Benny himself manages to serve, cook and charge without missing a
step. At the north side of the cafe you can see a red door connecting with the
toilet.

Nearby customers glance at your costume with open curiosity.

On the counter is a cup of coffee.

>DRINK COFFEE
You pick up the cup and swallow a mouthful. Benny's WORLDWIDE REPUTATION is well
deserved. Just as you finish, Benny takes away the empty cup. "That will be one
quidbuck, sir."

>PAY COIN TO BENNY
With marvellous ILLUSIONIST gestures, you produce the coin from the depths of your
BULLET-PROOF costume as if it had popped out from Benny's ear! People around you

APPENDIX D • “CAPTAIN FATE” STORY

214

clap politely. Benny accepts the coin and gives it a SUSPICIOUS bite. "Thank you,
sir. Come back anytime," he says.

>GIVE KEY TO BENNY
Benny nods as you ADMIRABLY return his key.

"Didn't know there was a circus in town," comments one customer to another. "Seems
like the clowns have the day off."

>S
You step onto the sidewalk, where the passing pedestrians recognise the rainbow
EXTRAVAGANZA of Captain FATE's costume and cry your name in awe as you JUMP with
sensational momentum into the BLUE morning skies!

*** You fly away to SAVE the DAY ***

In that game you scored 2 out of a possible 2, in 32 turns.

Would you like to RESTART, RESTORE a saved game or QUIT?
> QUIT

Game source code
!==
Constant Story "Captain Fate";
Constant Headline

"^A simple Inform example
 ^by Roger Firth and Sonja Kesserich.^";

Release 2; Serial "020827"; ! for keeping track of public releases

Constant MANUAL_PRONOUNS;
Constant MAX_SCORE 2;
Constant OBJECT_SCORE 1;
Constant ROOM_SCORE 1;

Replace MakeMatch; ! required by pname.h
Replace Identical;
Replace NounDomain;
Replace TryGivenObject;

Include "Parser";
Include "pname"; ! pname.h is from the Archive

Object LibraryMessages ! must be defined between Parser and VerbLib
with before [;

Buy: "Petty commerce has rarely interested you.";
Dig: "Your keen senses detect NOTHING underground worth your

 immediate attention.";
Pray: "You won't need to bother almighty DIVINITIES to save

 the day.";
Sing: "Alas! That is not one of your many superpowers.";
Sleep: "A hero is ALWAYS on the watch.";
Sorry: "Captain FATE has no time for apologies, only for

 ACTION.";
Strong: "An unlikely vocabulary for a HERO like you.";
Swim: "You quickly turn all your ATTENTION towards locating a

 suitable place to EXERCISE your superior strokes,
 but alas! you find none.";

APPENDIX D • “CAPTAIN FATE” STORY

215

Miscellany:
if (lm_n == 19)

if (clothes has worn)
"In your secret identity's outfit, you manage most
 efficaciously to look like a two-cent loser, a
 good-for-nothing wimp.";

else
"Now that you are wearing your costume, you project
 the image of power UNBOUND, of ballooned,
 multicoloured MUSCLE, of DASHING yet MODEST chic.";

if (lm_n == 38)
"That's not a verb you need to SUCCESSFULLY save the
 day.";

if (lm_n == 39)
"That's not something you need to refer to in order to
 SAVE the day.";

];

Include "VerbLib";

!==
! Object classes

Class Room
with description "UNDER CONSTRUCTION",
has light;

Class Appliance
with before [; Take,Pull,Push,PushDir:

"Even though your SCULPTED adamantine muscles are up to the task,
 you don't favour property damage.";

],
has scenery;

!==
! The game objects

Room street "On the street"
with name 'city' 'buildings' 'skyscrapers' 'shops' 'apartments' 'cars',

description [;
if (player in booth)

"From this VANTAGE point, you are rewarded with a broad view
 of the sidewalk and the entrance to Benny's cafe.";

else
"On one side -- which your HEIGHTENED sense of direction
 indicates is NORTH -- there's an open cafe now serving
 lunch. To the south, you can see a phone booth.";

],
before [; Go:

if (player in booth && noun == n_obj) <<Exit booth>>;
],
n_to [; <<Enter outside_of_cafe>>;],
s_to [; <<Enter booth>>;],
in_to "But which way?",
cant_go

"No time now for exploring! You'll move much faster in your
 Captain FATE costume.";

APPENDIX D • “CAPTAIN FATE” STORY

216

Object "pedestrians" street
with name 'passing' 'people' 'pedestrians',

description
"They're just PEOPLE going about their daily HONEST business.",

before [;
Examine: return false;
default: "The passing pedestrians are of NO concern to you.";

],
has animate pluralname scenery;

Appliance booth "phone booth" street
with name 'old' 'red' 'picturesque' 'phone' 'booth' 'cabin'

'telephone' 'box',
description

"It's one of the old picturesque models, a red cabin with room
 for one caller.",

before [;
Open: "The booth is already open.";
Close: "There's no way to close this booth.";

],
after [; Enter:

"With implausible celerity, you dive inside the phone booth.";
],

has enterable container open;

Appliance "sidewalk" street
with name 'sidewalk' 'pavement' 'street',

article "the",
description

"You make a quick surveillance of the sidewalk and discover much
 to your surprise that it looks JUST like any other sidewalk in
 the CITY!";

Appliance outside_of_cafe "Benny's cafe" street
with name 'benny^s' 'cafe' 'entrance',

description
"The town's favourite for a quick snack, Benny's cafe has a 50's
 ROCKETSHIP look.",

before [; Enter:
print "With an impressive mixture of hurry and nonchalance you

step into the open cafe.^";
PlayerTo(cafe);
return true;

],
has enterable proper;

!--

APPENDIX D • “CAPTAIN FATE” STORY

217

Room cafe "Inside Benny's cafe"
with description [;

print "Benny's offers the FINEST selection of pastries and
sandwiches. Customers clog the counter, where Benny himself
manages to serve, cook and charge without missing a step. At
the north side of the cafe you can see a red door connecting
with the toilet.";

if (costume has worn && self.first_time_out == false) {
self.first_time_out = true;
StartDaemon(customers);
print "^^Nearby customers glance at your costume with open

curiosity.";
}
new_line;

],
first_time_out false, ! Captain Fate's first appearance?
before [; Go: if (noun ~= s_obj) return false;

if (benny.coffee_not_paid == true ||
benny.key_not_returned == true) {
print "Just as you are stepping into the street, the big hand

of Benny falls on your shoulder.";
if (benny.coffee_not_paid == true &&

benny.key_not_returned == true)
"^^~Hey! You've got my key and haven't paid for the
 coffee. Do I look like a chump?~ You apologise as only a
 HERO knows how to do and return inside.";

if (benny.coffee_not_paid == true)
"^^~Just waidda minute here, Mister,~ he says.
 ~Sneaking out without paying, are you?~ You quickly
 mumble an excuse and go back into the cafe. Benny
 returns to his chores with a mistrusting eye.";

if (benny.key_not_returned == true)
"^^~Just where you think you're going with the toilet
 key?~ he says. ~You a thief?~ As Benny forces you back
 into the cafe, you quickly assure him that it was only
 a STUPEFYING mistake.";

}
if (costume has worn) {

deadflag = 5; ! you win!
"You step onto the sidewalk, where the passing pedestrians
 recognise the rainbow EXTRAVAGANZA of Captain FATE's costume
 and cry your name in awe as you JUMP with sensational
 momentum into the BLUE morning skies!";

}
],
s_to street,
n_to toilet_door;

Appliance counter "counter" cafe
with name 'counter' 'bar',

article "the",
description

"The counter is made of an astonishing ALLOY of metals, CRUMB- &
 SPILL-RESISTANT and EASY to clean. Customers enjoy their snacks
 with UTTER tranquillity, safe in the notion that the counter can
 take it all.",

has supporter;

APPENDIX D • “CAPTAIN FATE” STORY

218

Object food "Benny's snacks" cafe
with name 'food' 'pastry' 'pastries' 'sandwich' 'sandwiches' 'snack'

'snacks' 'doughnut',
before [; "There is no time for FOOD right now.";],

has scenery proper;

Object menu "menu" cafe
with name 'informative' 'menu' 'board' 'picture' 'writing',

description
"The menu board lists Benny's food and drinks, along with their
 prices. Too bad you've never learnt how to read, but luckily
 there is a picture of a big cup of coffee among the
 incomprehensible writing.",

before [; Take:
"The board is mounted on the wall behind Benny. Besides, it's
 useless WRITING.";

]
has scenery;

Object customers "customers" cafe
with name 'customers' 'people' 'customer' 'men' 'women',

description [;
if (costume has worn)

"Most seem to be concentrating on their food, but some do
 look at you quite blatantly. Must be the MIND-BEFUDDLING
 colours of your costume.";

else
"A group of HELPLESS and UNSUSPECTING mortals, the kind
 Captain FATE swore to DEFEND the day his parents choked on a
 DEVIOUS slice of RASPBERRY PIE.";

],
life [;

Ask,Tell,Answer:
if (costume has worn)

"People seem to MISTRUST the look of your FABULOUS
 costume.";

else
"As John Covarth, you attract LESS interest than Benny's
 food.";

Kiss:
"There's no telling what sorts of MUTANT bacteria these
 STRANGERS may be carrying around.";

Attack:
"Mindless massacre of civilians is the qualification for
 VILLAINS. You are SUPPOSED to protect the likes of these
 people.";

],
orders [;

"These people don't appear to be of the cooperative sort.";
],

APPENDIX D • “CAPTAIN FATE” STORY

219

number_of_comments 0, ! for counting the customer comments
daemon [;

if (location == cafe && random(2) == 1) {
self.number_of_comments = self.number_of_comments + 1;
switch (self.number_of_comments) {

1: "^~Didn't know there was a circus in town,~ comments
 one customer to another. ~Seems like the clowns have
 the day off.~";

2: "^~These fashion designers don't know what to do to
 show off,~ snorts a fat gentleman, looking your way.
 Those within earshot try to conceal their smiles.";

3: "^~Must be carnival again,~ says a man to his wife,
 who giggles, stealing a peek at you.
 ~Time sure flies.~";

4: "^~Bad thing about big towns~, comments someone to
 his table companion, ~is you get the damnedest bugs
 coming out from toilets.~";

5: "^~I sure WISH I could go to work in my pyjamas,~
 says a girl in an office suit to some colleagues.
 ~It looks SO comfortable.~";

default: StopDaemon(self);
}

}
],

has scenery animate pluralname;

Object benny "Benny" cafe
with name 'benny',

description
"A deceptively FAT man of uncanny agility, Benny entertains his
 customers crushing coconuts against his forehead when the mood
 strikes him.",

coffee_asked_for false, ! has player asked for a coffee?
coffee_not_paid false, ! is Benny waiting to be paid?
key_not_returned false, ! is Benny waiting for the key?
life [;

Give: switch (noun) {
clothes:

"You NEED your unpretentious John Covarth clothes.";
costume:

"You NEED your stupendous ACID-PROTECTIVE suit.";
toilet_key:

self.key_not_returned = false;
move toilet_key to benny;
"Benny nods as you ADMIRABLY return his key.";

coin:
remove coin;
self.coffee_not_paid = false;
"With marvellous ILLUSIONIST gestures, you produce the
 coin from the depths of your BULLET-PROOF costume as if
 it had popped out from Benny's ear! People around you
 clap politely. Benny accepts the coin and gives it a
 SUSPICIOUS bite. ~Thank you, sir. Come back anytime,~
 he says.";

}

APPENDIX D • “CAPTAIN FATE” STORY

220

Attack:
if (costume has worn) {

deadflag = 4;
print "Before the horror-stricken eyes of the surrounding

people, you MAGNIFICENTLY jump OVER the counter and
attack Benny with REMARKABLE, albeit NOT sufficient,
speed. Benny receives you with a TREACHEROUS
upper-cut that sends your GRANITE JAW flying through
the cafe.^^
~These guys in pyjamas think they can bully innocent
folk,~ snorts Benny, as the EERIE hands of DARKNESS
engulf your vision and you lose consciousness.";

}
else

"That would be an unlikely act for MEEK John Covarth.";
Kiss: "This is no time for MINDLESS infatuation.";
Ask,Tell,Answer:

"Benny is too busy for idle chit-chat.";
],
orders [; ! handles ASK BENNY FOR X and BENNY, GIVE ME XXX

Give: switch (noun) {
toilet_key:

if (toilet_key in player)
"But you DO have the key already.";

if (self.coffee_asked_for == true) {
move toilet_key to player;
self.key_not_returned = true;
"Benny tosses the key to the rest rooms on the
 counter, where you grab it with a dextrous and
 precise movement of your HYPER-AGILE hand.";

}
else

"~Toilet is only fer customers,~ he grumbles,
 looking pointedly at a menu board behind him.";

coffee:
if (self.coffee_asked_for == true)

"One coffee should be enough.";
move coffee to counter;
self.coffee_asked_for = true;
self.coffee_not_paid = true;
"With two gracious steps, Benny places his world-famous
 Cappuccino in front of you.";

food:
"Food will take too much time, and you must change NOW.";

menu:
"With only the smallest sigh, Benny nods towards the menu
 on the wall behind him.";

default:
"~I don't think that's on the menu, sir.~";

}
],

has scenery animate male proper transparent;

APPENDIX D • “CAPTAIN FATE” STORY

221

Object coffee "cup of coffee" benny
with name 'cup' 'of' 'coffee' 'steaming' 'cappuccino'

'cappucino' 'capuccino' 'capucino',
initial "On the counter, the steaming Cappuccino awaits you.",
description [;

if (self in benny)
"The picture on the menu board SURE looks good.";

else
"It smells delicious.";

],
before [;

Take,Drink,Taste:
if (self in benny)

"You should ask Benny for one first.";
else {

move self to benny;
"You pick up the cup and swallow a mouthful. Benny's
 WORLDWIDE REPUTATION is well deserved. Just as you
 finish, Benny takes away the empty cup.
 ~That will be one quidbuck, sir.~";

}
Buy:

if (coin in player) <<Give coin benny>>;
else "You have no money.";

Smell:
"If your HYPERACTIVE pituitary glands are to be trusted,
 it's Colombian.";

];

Object outside_of_toilet "toilet" cafe
with name 'toilet' 'bath' 'rest' 'room' 'bathroom' 'restroom',

before [;
Enter:

if (toilet_door has open) {
PlayerTo(toilet);
return true;

}
else

"Your SUPERB deductive mind detects that the DOOR is
 CLOSED.";

Examine:
if (toilet_door has open)

"A brilliant thought flashes through your SUPERLATIVE
 brain: detailed examination of the toilet would be
 EXTREMELY facilitated if you entered it.";

else
"With a TREMENDOUS effort of will, you summon your
 unfathomable ASTRAL VISION and project it FORWARD
 towards the closed door... until you remember that it's
 Dr Mystere who's the one with mystic powers.";

Open: <<Open toilet_door>>;
Close: <<Close toilet_door>>;
Take,Push,Pull: "That would be PART of the building.";

],
has scenery openable enterable;

APPENDIX D • “CAPTAIN FATE” STORY

222

Object toilet_door
with pname '.x' 'red' '.x' 'toilet' 'door',

short_name [;
if (location == cafe) print "door to the toilet";
else print "door to the cafe";
return true;

],
description [;

if (location == cafe)
"A red door with the unequivocal black man-woman silhouettes
 marking the entrance to hygienic facilities. There is a
 scribbled note stuck on its surface.";

else
"A red door with no OUTSTANDING features.";

],
found_in cafe toilet,
before [ks;

Open:
if (self hasnt locked || toilet_key notin player)

return false;
ks = keep_silent; keep_silent = true;
<Unlock self toilet_key>; keep_silent = ks;
return true;

Lock:
if (self hasnt open) return false;
print "(first closing ", (the) self, ")^";
ks = keep_silent; keep_silent = true;
<Close self>; keep_silent = ks;
return false;

],
after [ks;

Unlock:
if (self has locked) return false;
print "You unlock ", (the) self, " and open it.^";
ks = keep_silent; keep_silent = true;
<Open self>; keep_silent = ks;
return true;

Open: give toilet light;
Close: give toilet ~light;

],
door_dir [;

if (location == cafe) return n_to;
else return s_to;

],
door_to [;

if (location == cafe) return toilet;
else return cafe;

],
with_key toilet_key,

has scenery door openable lockable locked;

APPENDIX D • “CAPTAIN FATE” STORY

223

Object toilet_key "toilet key" benny
with pname '.x' 'toilet' 'key',

article "the",
invent [;

if (clothes has worn) print "the CRUCIAL key";
else print "the used and IRRELEVANT key";
return true;

],
description

"Your SUPRA PERCEPTIVE senses detect nothing of consequence
 about the toilet key.",

before [;
if (self in benny)

"You SCAN your surroundings with ENHANCED AWARENESS,
 but fail to detect any key.";

];

Object "scribbled note" cafe
with name 'scribbled' 'note',

description [;
if (self.read_once == false) {

self.read_once = true;
"You apply your ENHANCED ULTRAFREQUENCY vision to the note
 and squint in concentration, giving up only when you see the
 borders of the note begin to blacken under the incredible
 intensity of your burning stare. You reflect once more how
 helpful it would've been if you'd ever learnt to read.
 ^^A kind old lady passes by and explains:
 ~You have to ask Benny for the key, at the counter.~^^
 You turn quickly and begin, ~Oh, I KNOW that, but...~^^
 ~My pleasure, son,~ says the lady, as she exits the cafe.";

}
else

"The scorched undecipherable note holds no SECRETS from
 you NOW! Ha!";

],
read_once false, ! has the player read the note once?
before [; Take:

"No reason to start collecting UNDECIPHERABLE notes.";
],

has scenery;

!--

Room toilet "Unisex toilet"
with description

"A surprisingly CLEAN square room covered with glazed-ceramic
 tiles, featuring little more than a lavatory and a light switch.
 The only exit is south, through the door and into the cafe.",

s_to toilet_door,
has ~light scored;

APPENDIX D • “CAPTAIN FATE” STORY

224

Appliance light_switch "light switch" toilet
with name 'light' 'switch',

description
"A notorious ACHIEVEMENT of technological SCIENCE, elegant yet
 EASY to use.",

before [; Push:
if (self has on) <<SwitchOff self>>;
else <<SwitchOn self>>;

],
after [;

SwitchOn:
give self light;
"You turn on the light in the toilet.";

SwitchOff:
give self ~light;
"You turn off the light in the toilet.";

],
has switchable ~on;

Appliance lavatory "lavatory" toilet
with name 'lavatory' 'wc' 'toilet' 'loo' 'bowl' 'can' 'john' 'bog',

before [; Examine:
if (coin in self) {

move coin to parent(self);
"The latest user CIVILLY flushed it after use, but failed to
 pick up the VALUABLE coin that fell from his pants.";

}
];

Object coin "valuable coin" lavatory
with name 'valuable' 'coin' 'silver' 'quidbuck',

description "It's a genuine SILVER QUIDBUCK.",
before [; Drop:

"Such a valuable coin? Har, har! This must be a demonstration of
 your ULTRA-FLIPPANT jesting!";

],
after [; Take:

"You crouch into the SLEEPING DRAGON position and deftly, with
 PARAMOUNT STEALTH, you pocket the lost coin.";

],
has scored;

!==
! The player's possessions

Object clothes "your clothes"
with name 'ordinary' 'street' 'clothes' 'clothing',

description
"Perfectly ORDINARY-LOOKING street clothes for a NOBODY like
 John Covarth.",

before [;
Disrobe,Change:

switch (location) {
street:

if (player in booth)
"Lacking Superman's super-speed, you realise that
 it would be awkward to change in plain view of
 the passing pedestrians.";

else
"In the middle of the street? That would be a

APPENDIX D • “CAPTAIN FATE” STORY

225

 PUBLIC SCANDAL, to say nothing of revealing your
 secret identity.";

cafe:
"Benny allows no monkey business in his
 establishment.";

toilet:
if (toilet_door has open)

"The door to the bar stands OPEN at tens of
 curious eyes. You'd be forced to arrest yourself
 for LEWD conduct.";

print "You quickly remove your street clothes and
bundle them up together into an INFRA MINUSCULE
pack ready for easy transportation. ";

if (toilet_door has locked) {
give clothes ~worn; give costume worn;
"Then you unfold your INVULNERABLE-COTTON costume
 and turn into Captain FATE, defender of free
 will, adversary of tyranny!";

}
else {

deadflag = 3;
"Just as you are slipping into Captain FATE's
 costume, the door opens and a young woman
 enters. She looks at you and starts screaming,
 ~RAPIST! NAKED RAPIST IN THE TOILET!!!~^^
 Everybody in the cafe quickly comes to the
 rescue, only to find you ridiculously jumping on
 one leg while trying to get dressed. Their
 laughter brings a QUICK END to your
 crime-fighting career!";

}
thedark:

"Last time you changed in the dark,
 you wore the suit inside out!";

}
Wear:

if (self has worn)
"You are already dressed as John Covarth.";

"The town NEEDS the power of Captain FATE, not the anonymity
 of John Covarth.";

],
has clothing proper pluralname;

Object costume "your costume"
with name 'captain' 'captain^s' 'fate' 'fate^s' 'costume' 'suit',

description
"STATE OF THE ART manufacture, from chemically reinforced 100%
 COTTON-lastic(tm).",

before [;
Wear:

if (clothes has worn)
"First you'd have to take off your commonplace
 unassuming John Covarth INCOGNITO street clothes.";

Disrobe,Change:
if (clothes has worn)

"But you're not yet wearing it!";
else

"You need to wear your costume to FIGHT crime!";
Drop:

"Your UNIQUE Captain FATE multi-coloured costume? The most

APPENDIX D • “CAPTAIN FATE” STORY

226

 coveted clothing ITEM in the whole city? Certainly NOT!";
],

has clothing proper;

!==
! Entry point routines

[Initialise;
#Ifdef DEBUG; pname_verify(); #Endif; ! suggested by pname.h
location = street;
move costume to player;
move clothes to player; give clothes worn;
lookmode = 2;
"^^Impersonating mild mannered John Covarth, assistant help boy at an
 insignificant drugstore, you suddenly STOP when your acute hearing
 deciphers a stray radio call from the POLICE. There's some MADMAN
 attacking the population in Granary Park! You must change into your
 Captain FATE costume fast...!^^";

];

[DeathMessage;
if (deadflag == 3) print "Your secret identity has been revealed";
if (deadflag == 4) print "You have been SHAMEFULLY defeated";
if (deadflag == 5) print "You fly away to SAVE the DAY";

];

[InScope person item;
if (person == player && location == thedark && real_location == toilet) {

PlaceInScope(light_switch);
PlaceInScope(toilet_door);

}
if (person == player && location == thedark)

objectloop (item in parent(player))
if (item has moved) PlaceInScope(item);

return false;
];

!==
! Standard and extended grammar

Include "Grammar";

[ChangeSub;
if (noun has pluralname) print "They're";
else print "That's";
" not something you must change to save the day.";

];

Verb 'change'
* noun -> Change;

Extend 'ask'
* creature 'for' topic -> AskFor;

!==

APPENDIX D • “CAPTAIN FATE” STORY

227

Compile-as-you-go

“Captain Fate” suffers from the same difficulty as “William Tell”: if you type the
code sequentially as you read through the guide, the game won’t compile until
you reach the end of Chapter 13. To compile and test as you go, add these stubs
to the end of the game file when you reach the end of Chapter 10:

! ==
! TEMPORARY DEFINITIONS NEEDED TO COMPILE AT THE END OF CHAPTER 10

Room cafe;
Object clothes;

Replace those stubs with these at the end of Chapter 11:

! ==
! TEMPORARY DEFINITIONS NEEDED TO COMPILE AT THE END OF CHAPTER 11

Room toilet;
Object clothes;
Object costume;

and with these at the end of Chapter 12:

! ==
! TEMPORARY DEFINITIONS NEEDED TO COMPILE AT THE END OF CHAPTER 12

Room toilet;
Object clothes;
Object costume;
Object coin;
Object coffee;
Object food;
Object menu;

At the end of Chapter 13 the game is complete, so you can delete the temporary
stubs.

T
Y
P
E

T
Y
P
E

T
Y
P
E

APPENDIX D • “CAPTAIN FATE” STORY

228

APPENDIX E • INFORM LANGUAGE

229

Appendix E • Inform language

efer to this appendix for a succinct but essentially complete summary
of the Inform programming language; it covers everything that
we’ve met in this guide, plus various constructs which didn’t occur
naturally, and others of an advanced or obscure nature.

Literals
In the specialised language of computing, the
basic unit of data storage is an eight-bit byte,
able to store a value 0..255. That’s too small to
be useful for holding anything other than a
single character, so most computers also work
with a group of two, four or eight bytes known
as a word (not to be confused with Inform’s
dictionary word). In the Z-Machine a storage
word comprises two bytes, and you can specify
in various ways the literal values to be stored.
• Decimal: -32768 to 32767

Hexadecimal: $0 to $FFFF
Binary: $$0 to $$1111111111111111

• Action: ##Look
• Character: 'a'
• Dictionary word: 'aardvark' (up to nine

characters significant); use circumflex “^” to
denote apostrophe.
Plural word: 'aardvarks//p'
Single-character word: "a" (name property
only) or 'a//'

• String: "aardvark's adventure" (maximum
around 4000 characters); can include special
values including:

Names
The identifier of an Inform const_id, var_id,
array, class_id, obj_id, property,
attribute, routine_id or label. Up to 32
characters: alphabetic (case not significant),
numeric and underscore, with the first character
not a digit.

Constants
Named word values, unchanging at run-time,
which are by default initialised to zero:

Constant const_id;
Constant const_id = expr;

Standard constants are true (1), false (0) and
nothing (0), also NULL (–1).
To define a constant (unless it already exists):

Default const_id expr;

Variables and arrays
Named word/byte values which can change at
run-time and are by default initialised to zero.
A global variable is a single word:

Global var_id;
Global var_id = expr;

A word array is a set of global words accessed
using array-->0,array-->1,... array-->(N–1):

Array array ––> N;
Array array ––> expr1 expr2... exprN;
Array array ––> "string";

A table array is a set of global words accessed
using array-->1, array-->2,... array-->N,
with array-->0 initialised to N:

Array array table N;
Array array table expr1 expr2...

exprN;
Array array table "string";

A byte array is a set of global bytes accessed
using array->0, array->1,... array->(N–1):

Array array –> N;
Array array –> expr1 expr2... exprN;
Array array –> "string";

A string array is a set of global bytes accessed
using array->1, array->2,... array->N, with
array->0 initialised to N:

Array array string N;
Array array string expr1 expr2...

exprN;
Array array string "string";

In all these cases, the characters of the
initialising string are unpacked to the
individual word/byte elements of the array.
See also Objects (for property variables) and
Routines (for local variables).

^ newline
~ double quotes “"”
@@64 at sign “@”
@@92 backslash “\”
@@94 circumflex “^”
@@126 tilde “~”
@`a a with a grave accent “à”, et al
@LL pound sign “£”, et al
@00 ... @31 low string 0..31

APPENDIX E • INFORM LANGUAGE

230

Expressions and operators
Use parentheses (...) to control the order of
evaluation.
Arithmetic/logical expressions support these
operators:

Conditional expressions return true or false;
q may be a list of choices q1 or q2 or... qN :

Boolean expressions return true or false; if p
has determined the result, q is not evaluated:

To return –1, 0 or 1 based on unsigned
comparison:

UnsignedCompare(p,q)

To return true if object q is a child or
grandchild or... of p:

IndirectlyContains(p,q)

To return the closest common parent of two
objects (or nothing):

CommonAncestor(p,q)

To return a random number 1..N , or one from a
list of constant values:

random(N)
random(value,value, ... value)

Classes and objects
To declare a class_id – a template for a family
of objects – where the optional (N) limits
instances created at run-time:

Class class_id(N)
class class_id class_id... class_id
with prop_def,

...
prop_def,

has attr_def attr_def... attr_def;

To declare an obj_id, “Object” can instead be
a class_id, the remaining four header items
are all optional, and arrows (->, -> ->, ...) and
parent_obj_id are incompatible:

Object arrows obj_id "ext_name"
parent_obj_id

class class_id class_id... class_id
with prop_def,

...
prop_def,

has attr_def attr_def... attr_def;

The class, with and has (and also the
rarely-used private) segments are all optional,
and can appear in any order.
To determine an object’s class as one of Class,
Object, Routine, String (or nothing):

metaclass(obj_id)

has segment: Each attr_def is either of:
attribute
~attribute

To change attributes at run-time:
give obj_id attr_def... attr_def;

with/private segments: Each prop_def
declares a variable (or word array) and can take
any of these forms (where a value is an
expression, a string or an embedded routine):

property
property value
property value value... value

A property variable is addressed by
obj_id.property (or within the object’s
declaration as self.property) .
Multiple values create a property array; in this
case obj_id.#property is the number of bytes
occupied by the array, the entries can be
accessed using obj_id.&property-->0,
obj_id.&property-->1, ... , and
obj_id.property refers to the value of the first
entry.
A property variable inherited from an object’s
class is addressed by
obj_id.class_id::property; this gives the
original value prior to any changes within the
object.

p + q addition
p – q subtraction
p * q multiplication
p / q integer division
p % q remainder
p++ increments p , returns orig value
++p increments p , returns new value
p–– decrements p , returns orig value
––p decrements p , returns new value
p & q bitwise AND
p | q bitwise OR
~p bitwise NOT (inversion)

p == q p is equal to q
p ~= q p isn’t equal to q
p > q p is greater than q
p < q p is less than q
p >= q p is greater than or equal to q
p <= q p is less than or equal to q
p ofclass q object p is of class q
p in q object p is a child of object q
p notin q object p isn’t a child of object q
p provides q object p provides property q
p has q object p has attribute q
p hasnt q object p hasn’t attribute q

p && q both p and q are true (non-zero)
p || q either p or q is true (non-zero)
~~p p is false (zero)

APPENDIX E • INFORM LANGUAGE

231

Manipulating the object tree
To change object relationships at run-time:

move obj_id to parent_obj_id;
remove obj_id;

To return the parent of an object (or nothing):
parent(obj_id)

To return the first child of an object (or
nothing):

child(obj_id)

To return the adjacent child of an object’s
parent (or nothing):

sibling(obj_id)

To return the number of child objects directly
below an object:

children(obj_id)

Message passing
To a class:

class_id.remaining()
class_id.create()
class_id.destroy(obj_id)
class_id.recreate(obj_id)
class_id.copy(to_obj_id,from_obj_id)

To an object:
obj_id.property(a1,a2, ... a7)

To a routine:
routine_id.call(a1,a2, ... a7)

To a string:
string.print()
string.print_to_array(array)

Uncommon and deprecated
statements
To jump to a labelled statement:

jump label;
...
.label; statement;

To terminate the program:
quit;

To save and restore the program state:
save label;
...
restore label;

To output the Inform compiler version number:
inversion;

To accept data from the current input stream:
read text_array parse_array

routine_id;

To assign to one of 32 ‘low string’ variables:
string N "string";

Lowstring string_var "string";
string N string_var;

Statements
Each statement is terminated by a semicolon
“;”.
A statement_block is a single statement or a
series of statements enclosed in braces {...}.
An exclamation “!” starts a comment – the rest
of the line is ignored.
A common statement is the assignment:

var_id = expr;

There are two forms of multiple assignment:
var_id = var_id = ... = expr;
var_id = expr, var_id = expr, ... ;

Routines
A routine can have up to 15 local variables:
word values which are private to the routine and
which by default are set to zero on each call.
Recursion is permitted.
A standalone routine:
• has a name, by which it is called using
routine_id(); can also be called indirectly
using
indirect(routine_id,a1,a2, ... a7)

• can take arguments, using
routine_id(a1,a2, ... a7), whose values
initialise the equivalent local variables

• returns true at the final “]”
[routine_id

local_var local_var... local_var;
statement;
statement;
...
statement;

];

A routine embedded as the value of an object
property:
• has no name, and is called when the property

is invoked; can also be called explicitly using
obj_id.property()

• accepts arguments only when called explicitly
• returns false at the final “]”
property [

local_var local_var... local_var;
statement;
statement;
...
statement;

]

Routines return a single value, when execution
reaches the final “]” or an explicit return
statement:

return expr;
return;
rtrue;
rfalse;

APPENDIX E • INFORM LANGUAGE

232

Flow control
To execute statements if expr is true;
optionally, to execute other statements if expr is
false:

if (expr)
statement_block

if (expr)
statement_block

else
statement_block

To execute statements depending on the value
of expr:

switch (expr) {
value: statement;... statement;
value: statement;... statement;
...
default: statement;... statement;

}

where each value can be given as:
constant
lo_constant to hi_constant
constant,constant,... constant

And, if you really must:
jump label;
...
.label; statement;

Loop control
To execute statements while expr is true:

while (expr)
statement_block

To execute statements until expr is true:
do

statement_block
until (expr)

To execute statements while a variable changes:
for (set_var : loop_while_expr :

update_var)
statement_block

To execute statements for all defined objects:
objectloop (var_id)

statement_block

To execute statements for all objects selected by
expr:

objectloop (expr_starting_with_var)
statement_block

To jump out of the current innermost loop or
switch:

break;

To immediately start the next iteration of the
current loop:

continue;

Displaying information
To output a list of values:

print value,value,... value;

To output a list of values followed by a newline,
then return true from the current routine:

print_ret value,value,... value;

If the first (or only) value is a string,
“print_ret” can be omitted:

"string",value, ... value;

Each value can be an expression, a string or a
rule.
An expression is output as a signed decimal
value.
A string in quotes "..." is output as text.
A rule is one of:

To output a newline character:
new_line;

To output multiple spaces:
spaces expr;

To output text in a display box:
box "string" "string"... "string";

To change from regular to fixed-pitch font:
font off;
...
font on;

To change the font attributes:
style bold; ! use any of these
style underline; !
style reverse; !
...
style roman;

(number) expr the expr in words
(char) expr the expr as a single

character
(string) addr the string at the addr
(address) addr the dictionary word at the

addr
(name) obj_id the external (short) name

of the obj_id
(a) obj_id the short name preceded

by “a/an”, by “some”, or
by nothing for proper
nouns

(the) obj_id the short name preceded
by “the”

(The) obj_id the short name preceded
by “The”

(routine_id)
value

the output when calling
routine_id(value)

APPENDIX E • INFORM LANGUAGE

233

Verbs and actions
To specify a new verb:

Verb 'verb' 'verb'... 'verb'
* token token... token –> action
* token token... token –> action
...
* token token... token –> action;

where instead “Verb” can be “Verb meta”,
“action” can be “action reverse”; tokens
are optional and each is one of:

To add synonyms to an existing verb:
Verb 'verb' 'verb'... =

'existing_verb';

To modify an existing verb:
Extend 'existing_verb' last

* token token... token –> action
* token token... token –> action
...
* token token... token –> action;

where instead “Extend” can be “Extend only”
and “last” can be omitted, or changed to
“first” or “replace”.
To explicitly trigger a defined action (both noun
and second are optional, depending on the
action):

<action noun second>;

To explicitly trigger a defined action, then
return true from the current routine:

<<action noun second>>;

Other useful directives
To include a directive within a routine
definition [...], insert a hash “#” as its first
character.
To conditionally compile:

Ifdef name; ! use any one of these
Ifndef name; !
Iftrue expr; !
Iffalse expr; !

...
Ifnot;

...
Endif;

To display a compile-time message:
Message "string";

To include the contents of a file, searching the
Library path:

Include "source_file";

To include the contents of a file in the same
location as the current file:

Include ">source_file";

To specify that a library routine is to be
replaced:

Replace routine_id;

To set the game’s release number (default is 1),
serial number (default is today’s yymmdd) and
status line format (default is score):

Release expr;
Serial "yymmdd";
Statusline score;
Statusline time;

To declare a new attribute common to all
objects:

Attribute attribute;

To declare a new property common to all
objects:

Property property;
Property property expr;

Uncommon and deprecated
directives
You’re unlikely to need these; look them up in
the Designer’s Manual if necessary.

Abbreviate "string"... "string";

End;

Import var_id var_id ... var_id;

Link "compiled_file";

Stub routine_id N;

Switches list_of_compiler_switches;

System_file;

'word' that literal word
'w1'/'w2'/... any one of those literal

words
attribute an object with that

attribute
creature an object with animate

attribute
held an object held by the

player
noun an object in scope
noun=routine_id an object for which

routine_id returns true
scope=routine_id an object in this

re-definition of scope
multiheld one or more objects held

by the player
multi one or more objects in

scope
multiexcept as multi, omitting the

specified object
multiinside as multi, omitting those in

specified object
topic any text
number any number
routine_id a general parsing routine

APPENDIX E • INFORM LANGUAGE

234

APPENDIX F • INFORM LIBRARY

235

Appendix F • Inform library

ibrary files define Inform’s model world, turning a conventional
programming language into a text adventure development system.
Here are the library constants, variables and routines, the standard
object properties and attributes, the verb grammars and actions.

Library objects
compass

A container object holding the twelve
direction objects d_obj e_obj in_obj n_obj
ne_obj nw_obj out_obj s_obj se_obj
sw_obj u_obj w_obj.

LibraryMessages
If defined (between Includes of Parser and
VerbLib), changes standard library messages:
Object LibraryMessages

with before [;
action: "string";
action: "string";
action: switch (lm_n) {

value: "string";
value: "string",

(a) lm_o,".";
...
}

...
];

selfobj
The default player object. Avoid: use instead
the player variable, which usually refers to
selfobj.

thedark
A pseudo-room which becomes the location
when there is no light (although the player
object is not moved there).

Library constants
In addition to the standard constants true (1),
false (0) and nothing (0), the Library defines
NULL (–1) for an action, property or pronoun
whose current value is undefined.

User-defined constants
Some constants control features rather than
represent values.
AMUSING_PROVIDED

Activates the Amusing entry point.
DEATH_MENTION_UNDO

Offers “UNDO the last move” at game end.
DEBUG

Activates the debug commands.
Headline = "string"

Mandatory: game style, copyright info, etc.
MANUAL_PRONOUNS

Pronouns reflect only objects mentioned by
the player.

MAX_CARRIED = expr
Limit on direct possessions that the player
can carry (default 100).

MAX_SCORE = expr
Maximum game score (default 0).

MAX_TIMERS = expr
Limit on active timers/daemons (default 32).

NO_PLACES
“OBJECTS” and “PLACES” verbs are barred.

NUMBER_TASKS = expr
Number of scored tasks (default 1).

OBJECT_SCORE = expr
For taking a scored object for the first time
(default 4).

ROOM_SCORE = expr
For visiting a scored room for the first time
(default 5).

SACK_OBJECT = obj_id
A container object where the game places
held objects.

Story = "string"
Mandatory: the name of the story.

TASKS_PROVIDED
Activates the task scoring system.

USE_MODULES
Activates linking with pre-compiled library
modules.

WITHOUT_DIRECTIONS
De-activates standard compass directions (bar
“IN” and “OUT”). Place alternative directions
in the compass.

APPENDIX F • INFORM LIBRARY

236

Library variables
action

The current action.
actor

The target of an instruction: the player, or an
NPC.

deadflag
Normally 0: 1 indicates a regular death, 2
indicates that the player has won, 3 or more
denotes a user-defined end.

inventory_stage
Used by invent and list_together
properties.

keep_silent
Normally false; true makes most group 2
actions silent.

location
The player’s current room; unless that’s dark,
when it contains thedark, real_location
contains the room.

notify_mode
Normally true: false remains silent when
score changes.

noun
The primary focus object for the current
action.

player
The object acting on behalf of the human
player.

real_location
The player’s current room when in the dark.

score
The current score.

second
The secondary focus object for the current
action.

self
The object which received a message.
(Note: a run-time variable, not a compile-time
constant.)

sender
The object which sent a message (or
nothing).

task_scores
A byte array holding scores for the task
scoring system.

the_time
The game’s clock, in minutes 0..1439 since
midnight.

turns
The game’s turn counter.

wn
The input stream word number, counting
from 1.

Library routines
Achieved(expr)

A scored task has been achieved.
AfterRoutines()

In a group 2 action, controls output of “after”
messages.

AllowPushDir()
An object can be pushed from one location to
another.

Banner()
Prints the game banner.

ChangePlayer(obj_id,flag)
Player assumes the persona of the obj_id. If
the optional flag is true, room descriptions
include “(as object)”.

CommonAncestor(obj_id1,obj_id2)
Returns the nearest object which has a
parental relationship to both obj_ids, or
nothing.

DictionaryLookup(byte_array,length)
Returns address of word in dictionary, or 0 if
not found.

DrawStatusLine()
Refreshes the status line; happens anyway at
end of each turn.

GetGNAOfObject(obj_id)
Returns gender-number-animation 0..11 of
the obj_id.

HasLightSource(obj_id)
Returns true if the obj_id has light.

IndirectlyContains(parnt_obj_id,obj_id)
Returns true if obj_id is currently a child or
grand-child or great-grand-child... of the
parent_object.

IsSeeThrough(obj_id)
Returns true if light can pass through the
obj_id.

Locale(obj_id,"string1","string2")
Describes the contents of obj_id, and returns
their number. After objects with own
paragraphs, the rest are listed preceded by
string1 or string2.

LoopOverScope(routine_id,actor)
Calls routine_id(obj_id) for each obj_id
in scope. If the optional actor is supplied,
that defines the scope.

MoveFloatingObjects()
Adjusts positions of game’s found_in objects.

NextWord()
Returns the next dictionary word in the input
stream, incrementing wn by one. Returns
false if the word is not in the dictionary, or if
the input stream is exhausted.

APPENDIX F • INFORM LIBRARY

237

NextWordStopped()
Returns the next dictionary word in the input
stream, incrementing wn by one. Returns
false if the word is not in the dictionary, –1
if the input stream is exhausted.

NounDomain(obj_id1,obj_id2,type)
Performs object parsing; see also
ParseToken().

ObjectIsUntouchable(obj_id,flag)
Tests whether there is a barrier – a container
object which is not open – between player
and obj_id. Unless the optional flag is
true, outputs “You can't because ... is in the
way”. Returns true is a barrier is found,
otherwise false.

OffersLight(obj_id)
Returns true if the obj_id offers light.

ParseToken(type,value)
Performs general parsing; see also
NounDomain().

PlaceInScope(obj_id)
Used in an add_to_scope property or
scope= token to put the obj_id into scope for
the parser.

PlayerTo(obj_id,flag)
Moves the player to obj_id. Prints its
description unless optional flag is 1 (no
description) or 2 (as if walked in).

PrintOrRun(obj_id,property,flag)
If obj_id.property is a string, output it
(followed by a newline unless optional flag is
true), and return true. If it’s a routine, run it
and return what the routine returns.

PronounNotice(obj_id)
Associates an appropriate pronoun with the
obj_id.

PronounValue('pronoun')
Returns the object to which 'it' (or 'him',
'her', 'them') currently refers, or nothing.

ScopeWithin(obj_id)
Used in an add_to_scope property or
scope= token to put the contents of the
obj_id in scope for the parser.

SetPronoun('pronoun',obj_id)
Defines the obj_id to which a given pronoun
refers.

SetTime(expr1,expr2)
Sets the_time to expr1 (in mins 0..1439 since
midnight), running at expr2 –
+ve: expr2 minutes pass each turn;
–ve: -expr2 turns take one minute;
zero: time stands still.

StartDaemon(obj_id)
Starts the obj_id’s daemon.

StartTimer(obj_id,expr)
Starts the obj_id’s timer, initialising its
time_left to expr. The object’s time_out
property will be called after that number of
turns have elapsed.

StopDaemon(obj_id)
Stops the obj_id’s daemon.

StopTimer(obj_id)
Stops the obj_id’s timer.

TestScope(obj_id,actor)
Returns true if the obj_id is in scope,
otherwise false. If the optional actor is
supplied, that defines the scope.

TryNumber(expr)
Parses word expr in the input stream as a
number, recognising decimals, also English
words one..twenty. Returns the number
1..10000, or -1000 if the parse fails.

UnsignedCompare(expr1,expr2)
Returns –1 if expr1 is less than expr2, 0 if
expr1 equals expr2, and 1 if expr1 is greater
than expr2. Both expressions are unsigned, in
the range 0..65535.

WordAddress(expr)
Returns a byte array containing the raw text
of word expr in the input stream.

WordInProperty(word,obj_id,property)
Returns true if the dictionary word is listed in
the property values for the obj_id.

WordLength(expr)
Returns the length of word expr in the input
stream.

WriteListFrom(obj_id,expr)
Outputs a list of obj_id and its siblings, in the
given style, an expr formed by adding any of:
ALWAYS_BIT, CONCEAL_BIT, DEFART_BIT,
ENGLISH_BIT, FULLINV_BIT, INDENT_BIT,
ISARE_BIT, NEWLINE_BIT, PARTINV_BIT,
RECURSE_BIT, TERSE_BIT, WORKFLAG_BIT.

YesOrNo()
Returns true if the player types “YES”, false
for “NO”.

ZRegion(arg)
Returns the type of its arg: 3 for a string
address, 2 for a routine address, 1 for an
object number, or 0 otherwise.

APPENDIX F • INFORM LIBRARY

238

Object properties
Where the value of a property can be a routine,
several formats are possible (but remember:
embedded “]” returns false, standalone “]”
returns true):

property [; stmt; stmt; ...]

property [; return routine_id();]

property [; routine_id();]

property routine_id

In this appendix, “⊕” marks an additive
property. Where a Class and an Object of that
class both define the same property, the value
specified for the Object normally overrides the
value inherited from the Class. However, if the
property is additive then both values apply, with
the Object’s value being considered first.
add_to_scope

For an object: additional objects which follow
it in and out of scope. The value can be a
space-separated list of obj_ids, or a routine
which invokes PlaceInScope() or
ScopeWithin() to specify objects.

after ⊕
For an object: receives every action and
fake_action for which this is the noun.
For a room: receives every action which
occurs here.
The value is a routine of structure similar to a
switch statement, having cases for the
appropriate actions (and an optional
default as well); it is invoked after the action
has happened, but before the player has been
informed. The routine should return false to
continue, telling the player what has
happened, or true to stop processing the
action and produce no further output.

article
For an object: the object’s indefinite article –
the default is automatically “a”, “an” or
“some”. The value can be a string, or a
routine which outputs a string.

articles
For a non-English object: its definite and
indefinite articles. The value is an array of
strings.

before ⊕
For an object: receives every action and
fake_action for which this is the noun.
For a room: receives every action which
occurs here.
The value is a routine invoked before the
action has happened. See after.

cant_go
For a room: the message when the player
attempts an impossible exit. The value can
be a string, or a routine which outputs a
string.

capacity
For a container or supporter object: the
number of objects which can be placed in or
on it – the default is 100.
For the player: the number which can be
carried – selfobj has an initial capacity of
MAX_CARRIED.
The value can be a number, or a routine
which returns a number.

d_to
For a room: a possible exit. The value can be
• false (the default): not an exit;
• a string: output to explain why this is not

an exit;
• a room: the exit leads to this room;
• a door object: the exit leads through this

door;
• a routine which should return false, a

string, a room, a door object, or true to
signify “not an exit” and produce no
further output.

daemon
The value is a routine which can be activated
by StartDaemon(obj_id) and which then
runs once each turn until deactivated by
StopDaemon(obj_id).

describe ⊕
For an object: called before the object’s
description is output. For a room: called
before the room’s (long) description is output.
The value is a routine which should return
false to continue, outputting the usual
description, or true to stop processing and
produce no further output.

description
For an object: its description (output by
Examine).
For a room: its long description (output by
Look).
The value can be a string, or a routine which
outputs a string.

door_dir
For a compass object (d_obj, e_obj, ...): the
direction in which an attempt to move to this
object actually leads.
For a door object: the direction in which this
door leads.
The value can be a directional property
(d_to, e_to, ...), or a routine which returns
such a property.

APPENDIX F • INFORM LIBRARY

239

door_to
For a door object: where it leads. The value
can be
• false (the default): leads nowhere;
• a string: output to explain why door leads

nowhere;
• a room: the door leads to this room;
• a routine which should return false, a

string, a room, or true to signify “leads
nowhere” without producing any output.

e_to
See d_to.

each_turn ⊕
Invoked at the end of each turn (after all
appropriate daemons and timers) whenever
the object is in scope. The value can be a
string, or a routine.

found_in
For an object: the rooms where this object
can be found, unless it has the absent
attribute. The value can be
• a space-separated list of rooms (where this

object can be found) or obj_ids (whose
locations are tracked by this object);

• a routine which should return true if this
object can be found in the current location,
otherwise false.

grammar
For an animate or talkable object: the
value is a routine called when the parser
knows that this object is being addressed, but
has yet to test the grammar. The routine
should return false to continue, true to
indicate that the routine has parsed the entire
command, or a dictionary word ('word ' or
–'word ').

in_to
See d_to.

initial
For an object: its description before being
picked up.
For a room: its description when the player
enters the room.
The value can be a string, or a routine which
outputs a string.

inside_description
For an enterable object: its description,
output as part of the room description when
the player is inside the object.
The value can be a string, or a routine which
outputs a string.

invent
For an object: the value is a routine for
outputting the object’s inventory listing,
which is called twice. On the first call nothing
has been output; inventory_stage has the
value 1, and the routine should return false
to continue, or true to stop processing and
produce no further output. On the second call
the object’s indefinite article and short name
have been output, but not any subsidiary
information; inventory_stage has the value
2, and the routine should return false to
continue, or true to stop processing and
produce no further output.

life ⊕
For an animate object: receives
person-to-person actions (Answer, Ask,
Attack, Give, Kiss, Order, Show, Tell,
ThrowAt and WakeOther) for which this is
the noun. The value is a routine of structure
similar to a switch statement, having cases
for the appropriate actions (and an optional
default as well). The routine should return
false to continue, telling the player what has
happened, or true to stop processing the
action and produce no further output.

list_together
For an object: groups related objects when
outputting an inventory or room contents list.
The value can be
• a number: all objects having this value are

grouped;
• a string: all objects having this value are

grouped as a count of the string;
• a routine which is called twice. On the first

call nothing has been output;
inventory_stage has the value 1, and the
routine should return false to continue, or
true to stop processing and produce no
further output. On the second call the list
has been output; inventory_stage has the
value 2, and there is no test on the return
value.

n_to
See d_to.

name ⊕
Defines a space-separated list of words which
are added to the Inform dictionary. Each
word can be supplied in apostrophes '...'
or quotes "..."; in all other cases only words
in apostrophes update the dictionary.
For an object: identifies this object.
For a room: outputs “does not need to be
referred to”.

ne_to
See d_to.

APPENDIX F • INFORM LIBRARY

240

number
For an object or room: the value is a
general-purpose variable freely available for
use by the program. A player object must
provide (but not use) this variable.

nw_to
See d_to.

orders
For an animate or talkable object: the
value is a routine called to carry out the
player’s orders. The routine should return
false to continue, or true to stop processing
the action and produce no further output.

out_to
See d_to.

parse_name
For an object: the value is a routine called to
parse an object’s name. The routine should
return zero if the text makes no sense, –1 to
cause the parser to resume, or the positive
number of words matched.

plural
For an object: its plural form, when in the
presence of others like it. The value can be a
string, or a routine which outputs a string.

react_after
For an object: detects nearby actions – those
which take place when this object is in scope.
The value is a routine invoked after the
action has happened, but before the player
has been informed. See after.

react_before
For an object: detects nearby actions – those
which take place when this object is in scope.
The value is a routine invoked before the
action has happened. See after.

s_to
se_to

See d_to.
short_name

For an object: an alternative or extended
short name. The value can be a string, or a
routine which outputs a string. The routine
should return false to continue by
outputting the object’s actual short name
(from the head of the object definition), or
true to stop processing the action and
produce no further output.

short_name_indef
For a non-English object: the short name
when preceded by an indefinite object. The
value can be a string, or a routine which
outputs a string.

sw_to
See d_to.

time_left
For a timer object: the value is a variable to
hold the number of turns left until this
object’s timer – activated and initialised by
StartTimer(obj_id) – counts down to zero
and invokes the object’s time_out property.

time_out
For a timer object: the value is a routine
which is run when the object’s time_left
value – initialised by StartTimer(obj_id),
and not in the meantime cancelled by
StopTimer(obj_id) – counts down to zero.

u_to
w_to

See d_to.
when_closed
when_open

For a container or door object: used when
including this object in a room’s long
description. The value can be a string, or a
routine which outputs a string.

when_off
when_on

For a switchable object: used when
including this object in a room’s long
description. The value can be a string, or a
routine which outputs a string.

with_key
For a lockable object: the obj_id (generally
some kind of key) needed to lock and unlock
the object, or nothing if no key fits.

APPENDIX F • INFORM LIBRARY

241

Object attributes
absent

For a floating object (one with a found_in
property, which can appear in many rooms):
is no longer there.

animate
For an object: is a living creature.

clothing
For an object: can be worn.

concealed
For an object: is present but hidden from
view.

container
For an object: other objects can be put in (but
not on) it.

door
For an object: is a door or bridge between
rooms.

edible
For an object: can be eaten.

enterable
For an object: can be entered.

female
For an animate object: is female.

general
For an object or room: a general-purpose flag.

light
For an object or room: is giving off light.

lockable
For an object: can be locked; see the
with_key property.

locked
For an object: can’t be opened.

male
For an animate object: is male.

moved
For an object: is being, or has been, taken by
the player.

neuter
For an animate object: is neither male nor
female.

on
For a switchable object: is switched on.

open
For a container or door object: is open.

openable
For a container or door object: can be
opened.

pluralname
For an object: is plural.

proper
For an object: the short name is a proper
noun, therefore not to be preceded by “The”
or “the”.

scenery
For an object: can’t be taken; is not listed in a
room description.

scored
For an object: awards OBJECT_SCORE points
when taken for the first time. For a room:
awards ROOM_SCORE points when visited for
the first time.

static
For an object: can’t be taken.

supporter
For an object: other objects can be put on
(but not in) it.

switchable
For an object: can be switched off or on.

talkable
For an object: can be addressed in “object, do
this” style.

transparent
For a container object: objects inside it are
visible.

visited
For a room: is being, or has been, visited by
the player.

workflag
Temporary internal flag, also available to the
program.

worn
For a clothing object: is being worn.

APPENDIX F • INFORM LIBRARY

242

Optional entry points
These routines, if you supply them, are called
when shown.
AfterLife()

Player has died; deadflag=0 resurrects.
AfterPrompt()

The “>” prompt has been output.
Amusing()

Player has won; AMUSING_PROVIDED is
defined.

BeforeParsing()
The parser has input some text, set up the
buffer and parse tables, and initialised wn to 1.

ChooseObjects(object,flag)
Parser has found “ALL” or an ambiguous
noun phrase and decided that object should
be excluded (flag is 0), or included (flag is
1). The routine should return 0 to let this
stand, 1 to force inclusion, or 2 to force
exclusion. If flag is 2, parser is undecided;
routine should return appropriate score 0..9.

DarkToDark()
The player has gone from one dark room to
another.

DeathMessage()
The player has died; deadflag is 3 or more.

GamePostRoutine()
Called after all actions.

GamePreRoutine()
Called before all actions.

Initialise()
Mandatory; note British spelling: called at
start. Must set location; can return 2 to
suppress game banner.

InScope()
Called during parsing.

LookRoutine()
Called at the end of every Look description.

NewRoom()
Called when room changes, before
description is output.

ParseNoun(object)
Called to parse the object’s name.

ParseNumber(byte_array,length)
Called to parse a number.

ParserError(number)
Called to handle an error.

PrintRank()
Completes the output of the score.

PrintTaskName(number)
Prints the name of the task.

PrintVerb(addr)
Called when an unusual verb is printed.

TimePasses()
Called after every turn.

UnknownVerb()
Called when an unusual verb is encountered.

Group 1 actions
Group 1 actions support the ‘meta’ verbs. These
are the standard actions and their triggering
verbs.

and the debug tools.

FullScore “FULLSCORE”, “FULL [SCORE]”
LMode1 “BRIEF”, “NORMAL”
LMode2 “LONG”, “VERBOSE”
LMode3 “SHORT”, “SUPERBRIEF”
NotifyOff “NOTIFY OFF”
NotifyOn “NOTIFY [ON]”
Objects “OBJECTS”
Places “PLACES”
Pronouns “[PRO]NOUNS”
Quit “DIE”, “Q[UIT]”
Restart “RESTART”
Restore “RESTORE”
Save “CLOSE”
Score “SCORE”
ScriptOff “[TRAN]SCRIPT OFF”,

“NOSCRIPT”, “UNSCRIPT”
ScriptOn “[TRAN]SCRIPT [ON]”
Verify “VERIFY”
Version “VERSION”

ActionsOff “ACTIONS OFF”
ActionsOn “ACTIONS [ON]”
ChangesOff “CHANGES OFF”
ChangesOn “CHANGES [ON]”
CommandsOff “RECORDING OFF”
CommandsOn “RECORDING [ON]”
CommandsRead “REPLAY”
Gonear “GONEAR”
Goto “GOTO”
Predictable “RANDOM”
RoutinesOff “MESSAGES OFF”,

“ROUTINES OFF”
RoutinesOn “MESSAGES [ON]”,

“ROUTINES [ON]”
Scope “SCOPE”
Showobj “SHOWOBJ”
Showverb “SHOWVERB”
TimersOff “DAEMONS OFF”, “TIMERS OFF”
TimersOn “DAEMONS [ON]”, “TIMERS [ON]”
TraceLevel “TRACE number”
TraceOff “TRACE OFF”
TraceOn “TRACE [ON]”
XAbstract “ABSTRACT”
XPurloin “PURLOIN”
XTree “TREE”

APPENDIX F • INFORM LIBRARY

243

Group 2 actions
Group 2 actions usually work, given the right
circumstances.

Group 3 actions
Group 3 actions are by default stubs which
output a message and stop at the “before” stage
(so there is no “after” stage).

Close “CLOSE [UP]”, “COVER [UP]”,
“SHUT [UP]”

Disrobe “DISROBE”, “DOFF”, “REMOVE”,
“SHED”, “TAKE OFF”

Drop “DISCARD”, “DROP”, “PUT DOWN”,
“THROW”

Eat “EAT”
Empty “EMPTY [OUT]”
EmptyT “EMPTY IN|INTO|ON|ONTO|TO”
Enter “CROSS”, “ENTER”, “GET

IN|INTO|ON|ONTO”,
“GO IN|INSIDE|INTO|THROUGH”,
“LEAVE IN|INSIDE|INTO|THROU
GH”, “LIE IN|INSIDE|ON”,
“LIE ON TOP OF”,
“RUN IN|INSIDE|INTO|THROUGH
”, “SIT IN|INSIDE|ON”,
“SIT ON TOP OF”, “STAND ON”,
“WALK IN|INSIDE|INTO|THROUG
H”

Examine “CHECK,” “DESCRIBE”,
“EXAMINE”, “L[OOK] AT”, “READ”,
“WATCH”, “X”

Exit “EXIT”, “GET OFF|OUT|UP”,
“LEAVE”, “OUT[SIDE]”,
“STAND [UP]”

GetOff “GET OFF”
Give “FEED [TO]”, “GIVE [TO]”,

“OFFER [TO]”, “PAY [TO]”
Go “GO”, “LEAVE”, “RUN”, “WALK”
GoIn “CROSS”, “ENTER”, “IN[SIDE]”
Insert “DISCARD IN|INTO”,

“DROP DOWN|IN|INTO”,
“INSERT IN|INTO”,
“PUT IN|INSIDE|INTO”,
“THROW DOWN|IN|INTO”

Inv “I[NV]”, “INVENTORY”,
“TAKE INVENTORY”

InvTall “I[NV] TALL”,
“INVENTORY TALL”

InvWide “I[NV] WIDE”,
“INVENTORY WIDE”

Lock “LOCK WITH”
Look “L[OOK]”
Open “OPEN”, “UNCOVER”, “UNDO”,

“UNWRAP”
PutOn “DISCARD ON|ONTO”,

“DROP ON|ONTO”,
“PUT ON|ONTO”,
“THROW ON|ONTO”

Remove “GET FROM”, “REMOVE FROM”,
“TAKE FROM|OFF”

Search “L[OOK] IN|INSIDE|INTO|THRO
UGH”, “SEARCH”

Show “DISPLAY [TO]”,
“PRESENT [TO]”, “SHOW [TO]”

SwitchOff “CLOSE OFF”, “SCREW OFF”,
“SWITCH OFF”, “TURN OFF”,
“TWIST OFF”

SwitchOn “SCREW ON”, “SWITCH ON”,
“TURN ON”, “TWIST ON”

Take “CARRY”, “GET”, “HOLD”,
“PEEL [OFF]”, “PICK UP”,
“REMOVE”, “TAKE”

Transfer “CLEAR TO”, “MOVE TO”,
“PRESS TO”, “PUSH TO”,
“SHIFT TO”, “TRANSFER TO”

Unlock “OPEN WITH”, “UNDO WITH”,
“UNLOCK WITH”

VagueGo “GO”, “LEAVE”, “RUN”, “WALK”
Wear “DON”, “PUT ON”, “WEAR”

Answer “ANSWER TO”, “SAY TO”,
“SHOUT TO”, “SPEAK TO”

Ask “ASK ABOUT”
AskFor “ASK FOR”
Attack “ATTACK”, “BREAK”, “CRACK”,

“DESTROY”, “FIGHT”, “HIT”,
“KILL”, “MURDER”, “PUNCH”,
“SMASH”, “THUMP”, “TORTURE”,
“WRECK”

Blow “BLOW”
Burn “BURN [WITH]”, “LIGHT [WITH]”
Buy “BUY” “PURCHASE”
Climb “CLIMB [OVER|UP]”, “SCALE”
Consult “CONSULT ABOUT|ON”,

“LOOK UP IN”,
“READ ABOUT IN”, “READ IN”

Cut “CHOP,” “CUT”, “PRUNE”, “SLICE”
Dig “DIG [WITH]”
Drink “DRINK”, “SIP”, “SWALLOW”
Fill “FILL”
Jump “HOP”, “JUMP”, “SKIP”
JumpOver “HOP OVER”, “JUMP OVER”,

“SKIP OVER”
Kiss “EMBRACE”, “HUG”, “KISS”
Listen “HEAR”, “LISTEN [TO]”
LookUnder “LOOK UNDER”
Mild Various mild swearwords.
No “NO”
Pray “PRAY”
Pull “DRAG” “PULL”

APPENDIX F • INFORM LIBRARY

244

Fake actions
Fake actions handle some special cases, or
represent “real” actions from the viewpoint of
the second object.

Push “CLEAR”, “MOVE”, “PRESS”,
“PUSH”, “SHIFT”

PushDir “CLEAR”, “MOVE”, “PRESS”,
“PUSH”, “SHIFT”

Rub “CLEAN”, “DUST”, “POLISH”,
“RUB”, “SCRUB”, “SHINE”,
“SWEEP”, “WIPE”

Set “ADJUST”, “SET”
SetTo “ADJUST TO”, “SET TO”
Sing “SING”
Sleep “NAP”, “SLEEP”
Smell “SMELL”, “SNIFF”
Sorry “SORRY”
Squeeze “SQUASH”, “SQUEEZE”
Strong Various strong swearwords.
Swim “DIVE”, “SWIM”
Swing “SWING [ON]”
Taste “TASTE”
Tell “TELL ABOUT”
Think “THINK”
ThrowAt “THROW AGAINST|AT|ON|ONTO”
Tie “ATTACH [TO]”, “FASTEN [TO]”,

“FIX [TO]”, “TIE [TO]”
Touch “FEEL,” “FONDLE”, “GROPE”,

“TOUCH”
Turn “ROTATE”, “SCREW”, “TURN”,

“TWIST”, “UNSCREW”
Wait “WAIT” “Z”
Wake “AWAKE[N]”, “WAKE [UP]”
WakeOther “AWAKE[N]”, “WAKE [UP]”
Wave “WAVE”
WaveHands “WAVE”
Yes “Y[ES]”

LetGo Generated by Remove.
ListMiscellany Outputs a range of inventory

messages.
Miscellany Outputs a range of utility

messages.
NotUnderstood Generated when parser fails

to interpret some orders.
Order Receives things not handled

by orders.
PluralFound Tells the parser that

parse_name() has identified
a plural object.

Prompt Outputs the prompt,
normally “>”.

Receive Generated by Insert and
PutOn.

TheSame Generated when parser can’t
distinguish between two
objects.

ThrownAt Generated by ThrowAt.

APPENDIX G • GLOSSARY

245

Appendix G • Glossary

uring our travels, we’ve encountered certain terms which have
particular significance in the context of the Inform text adventure
development system; here are brief definitions of many of those
specialised words and phrases.

action – the generated effect of the
player’s input, usually by the parser
but also occasionally by the designer’s
code. It refers to a single task to be
processed by Inform, such as DROP
KETTLE, and it’s stored in four
numbers: one each for the action itself
and the actor object who is to perform
it (the player or an NPC), one for the
noun – or direct object, if present – and
a fourth for the second noun – if it exists,
for example the “POT” in THROW
KETTLE AT POT.

alpha-testing – the testing which is
carried out by the game’s designer, in a
futile attempt to ensure that it does
everything that it should and nothing
that it shouldn’t. See also beta-testing.

argument – a parameter supplied in a
call to a routine, which is the actual
value for one of the routine’s defined
local variables. For example, the
argument is 8 in the call MyRoutine(8).
The definition of the routine includes
the variable that will hold the
argument, in this case x:
[MyRoutine x; ...];

ASCII file – see text file.

assignment – a statement which sets
or changes the value of a variable.
There are three in Inform: = (set equal
to), ++ (add one to the current value), --
(subtract one from the current value).

attributes – named flags that can be
defined for an object after the keyword

has. An attribute is either present (on)
or not present (off). The designer may
test from any other part of the program
if an object has a certain attribute, give
an attribute to an object or take it away
as need arises. For instance, the
attribute container states that the object
is capable of having other objects
placed inside it.

avatar – see player.

banner – information about a game
which is displayed at the start of play.

beta-testing – the testing which is
carried out by a small band of trusted
volunteers, prior to general public
release, during which the gross
inadequacy of the designer’s
alpha-testing effort becomes painfully
apparent.

binary file – a computer file
containing binary data – 0s and 1s –
which is created by a program and
which only a program can understand.

bold type – used to highlight a term
explained in this glossary.

child – see object tree.

class – a special object template from
which other objects can inherit
properties and/or attributes. The
template must begin with the word
Class and must have an internal
identifier. Objects that wish to inherit
from a class usually begin with the
internal ID of the class in place of the

APPENDIX G • GLOSSARY

246

word Object, but may instead define a
segment class followed by the class’s
internal ID. The designer may test
whether an object belongs to – is a
member of – a class.

code block – see statement block.

comment – text which starts with an
exclamation mark ! and which is
ignored by the compiler when it reads
the source file; added to improve the
file’s layout or for explanatory notes.

compile-time – the time when the
compiler is at work making the story
file. See also run-time.

compiler – a program that reads the
source code written by the designer
and turns it into a story file, which can
then be played by a Z-Machine
interpreter.

constant – a particular value which is
defined at compile-time, always stays
the same and cannot be changed while
the game is being played. Common
examples include numbers, strings and
the internal IDs of objects, any of
which can be either written out
explicitly or set as the value of a named
Constant.

Debug mode – a option which causes
to compiler to include extra code into
the story file, thus making it easier for
the designer to understand what’s
happening while a game is being tested
prior to release. See also Strict mode.

designer – a person who uses Inform
to create a text adventure game: in
other words, gentle reader, you.

dictionary – the collection of all input
words “understood” by the game.

dictionary word – a word written in
single quotes '...' within the source
file, usually (but not exclusively) as
one of the values assigned to an
object’s name property. All such words
are stored in the dictionary, which is
consulted by the parser when
attempting to make sense of a player’s
command. Only the first nine
characters are significant (thus
'cardiogram' and 'cardiograph' are
treated as the same word). Use
'coins//p' to mark “coins” as plural,
referring to all coin objects which are
present. Use 't//' to enter the
single-character word “t” into the
dictionary ('t' is a constant
representing a character value).

directive – a line of Inform code
which asks the compiler to do
something there and then, at
compile-time; typical examples are to
Include the contents of another file, or
to set aside some space within the story
file where a variable value may be
stored. Not to be confused with a
statement, which asks the compiler to
compose an instruction which the
interpreter will obey at run-time;
typical examples are to display some
text, or to change the value held within
a variable’s storage space.

editor – a general-purpose program
for creating and modifying text files.

embedded routine – a routine that is
defined in the body of an object, as the
value of one of its properties. Unlike
a standalone routine, an embedded
routine doesn’t have a name of its own,
and returns false if execution reaches
the terminating marker] .

entry point – one of a predefined list
of optional routines which, if you

APPENDIX G • GLOSSARY

247

provide it, will be called by the library
either to produce some supplementary
output or to return a value causing the
library to change its default behaviour.

false – a logical state which is the
opposite of true, represented by the
value 0.

flag – a variable which can take only
two possible values.

function – see routine.

global variable – a variable not
specific to any routine or object, which
can be used by any routine in the
game.

inheritance – the process by which
an object belonging to a class acquires
the properties and attributes of said
class. Inheritance happens
automatically; the designer has just to
create class definitions, followed by
objects having those classes.

interpreter – a program that reads
the story file of a game and enables
people to play it. Interpreters must be
platform-specific (that is, they will be
different programs for each operating
system), thus allowing the story file to
be universal and
platform-independent.

italic type – used for emphasis, and
as a placeholder to represent a value
which you should supply.

library – a group of text files, part of
the Inform system, that includes the
parser, definitions for the model
world, language files, grammar
definitions and a customised stock of
default answers and behaviour for the
player’s actions. The library will make
frequent calls to the game file to see if

the designer wants to override those
defaults.

library files – the actual files
containing the source code of the
library. There are basically three
(although these three Include other
files as well): parser.h, verblib.h and
grammar.h, and they should be Included
in every Inform game.

library routine – one of a set of
routines included as part of the library
which the designer can call to perform
some commonly useful task.

local variable – a variable which is
part of only one routine; its value
remains unavailable to other routines
in the game. The value of a local
variable is not preserved between calls
to the routine.

model world – the imaginary
environment which the player
character inhabits.

newline – the ASCII control
character(s) used to mark the end of a
line of text.

NPC – a non-player character; any
character other than the protagonist.
Could range from an opponent or love
interest to a pet gerbil or a random
pedestrian.

object – a group of routines and
variables bundled up together in a
coherent unit. Objects represent the
items that make up the model world (a
torch; a car; a beam of light; etc.), a fact
which organises the designer’s code in
sensible chunks, easy to manage. Each
object has two parts: the header, which
comprises the internal ID, the external
name and its defined parent (all fields
are optional), and the body, which

APPENDIX G • GLOSSARY

248

comprises the property variables and
attribute flags particular to that object,
if any.

object tree – a hierarchy that defines
objects’ relationships in terms of
containment. Each object is either
contained within another object – its
parent – or is not contained; objects
such as rooms which are not within
another object have the constant
nothing (0) as a parent. An object
contained within another is a child. For
example, a shoe inside a box: the box
is the shoe’s parent and the shoe is a
child of the box. Consider now this
box being inside the wardrobe. The
box is a child of the wardrobe, but the
shoe is still a child of the box, not the
wardrobe. In a normal game, the
object tree will undergo many
transformations as the result of the
player’s activities.

parent – see object tree.

parser – part of the library which is
responsible for analysing the player’s
input and trying to make sense of it,
dividing it into separate words (verb,
nouns) and trying to match them
against the words stored in the game’s
dictionary and the actions defined in
the game’s grammar. If the player’s
input makes sense, the parser will
trigger the resulting action; if not, it
will complain that it didn’t understand.

PC – 1. a personal computer; 2. the
player character (see player).

player – 1. the final user of the game,
normally a person full of radical
opinions about your capabilities as a
designer; 2. a variable referring to the
object – sometimes known as an

“avatar” – which currently represents
that user within the model world.

print rule – a customised rule to
apply while in a print or print_ret
statement, to control the manner in
which an item of data is to be
displayed. For example:
print (The) noun, " is mine." is telling
the game to use a capitalised definite
article for the noun. The library defines
a stock of print rules, and designers
may create some of their own.

properties – variables attached to a
single object, of which they are a part.
They are defined in the body of the
object after the keyword with and have
a name and a value. The latter (which
defaults to 0) can be a number, a
string "...", a dictionary word '...' or
an embedded routine [;...]; it can
also be a list of those separated by
spaces. The value of an object’s
property can be tested and changed
from any part of the game. The fact
that an object provides a property may
be tested.

RAIF – the rec.arts.int-fiction
Usenet newsgroup for IF designers.

RGIF – the rec.games.int-fiction
Usenet newsgroup for IF players.

room – an object which defines a
geographical unit into which the map
of the model world is divided. Rooms
have no parent object (or, more
precisely, their parent object is nothing)
and they represent the places where
the player character is at any given
moment – the player character can’t be
in more than one room at a time. Note
that the name “room” does not imply
necessarily “indoors”. A clearing, a
sandy beach, the top of a tree, even

APPENDIX G • GLOSSARY

249

floating in outer space – these are all
possible room objects.

routine – in general terms, a routine is
a computer program that makes some
specific calculation, following an
ordered set of instructions; this is the
only unit of coherent and executable
code understood by Inform. More
practically, a routine is a collection of
statements which are written between
markers [...]. When a routine is
“called”, possibly with arguments –
specific values for its defined variables,
if they exist – the interpreter executes
the statements in sequence. If the
interpreter encounters a return
statement, or reaches the] at the end of
the routine, it immediately stops
executing statements in the routine
and resumes execution at the
statement which called that routine.
Every routine returns a value, which is
either supplied by the return statement
or implied by the] at the end of the
routine. See embedded routine and
standalone routine.

run-time – the period of time when
the interpreter is running a story file
(that is, someone is playing the game).
See also compile-time.

source file – a text file containing
your game defined using the Inform
language.

standalone routine – a routine
which is not part of an object. Unlike
an embedded routine, it must
provide a name of its own, and it
returns true when execution reaches
the terminating marker] .

statement – a single instruction to be
executed at run-time. See also
directive.

statement block – a group of
statements bundled up together
between braces {...}, which are then
treated as a single unit – as if they were
only one statement. They commonly
appear in loops and conditions.

story file – a binary file which is the
output of the compiler and can be
played through the use of an
interpreter (also known as Z-code file
or game file). The format of story files
is standard and platform-independent.

Strict mode – an option which causes
the compiler to include extra code
into the story file, thus making it easier
to detect certain design mistakes while
a game is being played. This mode
automatically invokes Debug mode.

string – a piece of text between
double quotes "...", to be displayed
for the player’s benefit at run-time.

switch – 1. an optional keyword or
symbol to operate special features of
the compiler. 2. a statement which
decides among different paths of
execution according to the value of an
expression.

text file – a computer file containing
words and phrases which a human can
read.

true – a logical state which is the
opposite of false, represented by any
value other than zero (typically 1).

variable – a named value which can
change during run-time. It must be
declared before use, either as a Global
variable (available to any routine
within the game), or as a local variable
(part of one specific routine and usable
by that routine alone). Variables have
a name and a value; it’s the value

APPENDIX G • GLOSSARY

250

which is capable of change, not the
name. Object properties behave as
variables.

Z-code file – see story file.

Z-Machine – a virtual machine (an
imaginary computer simulated by the
interpreter) on which story files run.
Z stands for “Zork”, the first ever
Infocom title.

 INDEX

251

Index

Symbols
! (comment character) 29
"..." (character string) 29, 47
"..." (statement) 107, 161
& (bitwise AND operator) 60
&& (boolean AND operator) 58, 60
(...) (in an expression) 151
. (property operator) 64
; (terminating character) 30, 31
<...> (statement) 75, 161
<<...>> (statement) 76, 161
= (assignment operator) 48, 83
== (equality operator) 83
++ (increment operator) 162
–– (decrement operator) 162
-> (indicating object parentage) 164
[...] (routine definition) 158
^ (apostrophe in dictionary word) 36,

48
^ (newline in string) 47
{...} (statement block definition) 78
| (bitwise OR operator) 60
|| (boolean OR operator) 60, 73
~ (double quotes in string) 47
~ (unsetting compiler switches) 22, 171
~ (used to negate attributes) 63, 66
~= (inequality operator) 135

A
accented characters 111
action (library variable) 60
actions 52, 56, 60, 175, 242
after (library property) 56, 58
ambiguous objects 127
animate (library attribute) 71, 76, 125
apostrophes 35, 36, 48
Apple Macintosh 23
Archive, IF 11, 19, 127
arguments (of a routine) 55, 59, 93, 158
article (library property) 75, 125
assignment statements 48, 162
Attribute (directive) 163

attributes 42, 44, 66, 156, 163, 241

B
banners 29, 62
BBEdit Lite editor 24
before (library property) 52, 54, 55, 58,

67
beta-testing 180, 183

C
cant_go (library property) 54, 59
capacity (library property) 44
“Captain Fate” story 105–150,

211–227
child (built-in routine) 157
children (built-in routine) 157
Class (directive) 64
classes 64–68, 156, 230
clothing (library attribute) 73
comments 29
CommonAncestor (library routine) 157
compiler (software tool) 17, 19, 22, 24,

167, 171
Debug mode 172
errors and warnings 167
Strict mode 22, 171, 172, 174
switches 22, 171

compiling 24, 28, 167–172, 208–210,
227

Constant (directive) 29, 41
container (library attribute) 36, 44, 108

D
d_to (library property) 33
daemon (library property) 117, 176
darkness 142
deadflag (library variable) 40, 90
DeathMessage (entry point routine) 90,

149
Debug mode 172
debugging 173–180
default (in switch statement) 88

 INDEX

252

description (library property) 31, 43,
64, 69

dictionary words 35, 48, 165
directives 154
door (library attribute) 119
door_dir (library property) 119
door_to (library property) 119
DOSI (mnemonic) 48

E
e_to (library property) 33, 43
each_turn (library property) 40, 43
editor (software tool) 18, 23, 24

BBEdit Lite 24
NotePad 18, 23
SimpleText 18, 24
TextEdit 18, 24
TextPad 23

else (in if statement) 80, 85
embedded routines 40, 50, 52, 92, 157,

231
Endif (directive) 148
enterable (library attribute) 108, 112
entry point routines 159, 242
errors (from the compiler) 167
expressions 151, 230
Extend (directive) 101, 175

F
false (built-in constant) 52, 60
FAQs

Inform 11
RAIF 11

female (library attribute) 77
files

library 18, 30
library extension 127, 163, 170
source 18, 24, 167
source template 27, 30
story 18, 19, 24, 167

flags, see attributes
found_in (library property) 72, 82, 97

G
general (library attribute) 162

give (statement) 63, 156
Global (directive) 41
global variables 41
grammar definitions 99
Grammar.h (library file) 30, 101

H
has (object operator) 70, 156
has (part of Object directive) 31, 42, 44,

156
hasnt (object operator) 70, 156
Headline (library constant) 29
“Heidi” story 27–60, 189–193

I
IBM PC 19
if (statement) 48, 58, 60
IF Archive 11, 19, 127
IF Competition 183
Ifdef (directive) 148
in (object operator)) 157
in_to (library property) 33, 53
Include (directive) 30, 170
IndirectlyContains (library routine) 157
indistinguishable objects 74
Infix debugger 172, 178
Infocom games 25, 172
Inform Designer’s Manual, The 10, 11,

21, 123, 151, 159, 181, 183
Inform FAQ 11
Inform home page 11
Informary, The 11
inheritance 65
initial (library property) 77
Initialise (entry point routine) 30, 33,

50, 62, 148
InScope (entry point routine) 143
inside_description (library property)

109
interpreter (software tool) 17, 19, 25,

167
invent (library property) 125

K
keep_silent (library variable) 123

 INDEX

253

L
library actions 242
library attributes 241
library constants 235
library files 18, 30

contributed 127, 163, 170
library objects 235
library properties 238
library routines 55, 59, 159, 236
library variables 236
LibraryMessages (library object) 113
life (library property) 77, 117, 130
light (library attribute) 31, 44, 64, 65
lm_n (library variable) 114
local variables 94, 158
location (library variable) 33, 78, 97,

143
lockable (library attribute) 119
locked (library attribute) 119
lookmode (library variable) 63

M
male (library attribute) 97
MANUAL_PRONOUNS (library constant) 107
MAX_CARRIED (library constant) 39
MAX_SCORE (library constant) 107
mimesis 142
move (statement) 56, 59, 63, 156
moved (library attribute) 144

N
n_to (library property) 33
name (library property) 35, 43, 48, 74,

129, 165
ne_to (library property) 33
new_line (statement) 118, 161
non-player characters, see NPCs
NotePad editor 18, 23
nothing (built-in constant) 60, 94
notin (object operator) 157
noun (grammar token) 99
noun (library variable) 57, 60
NPCs 76, 97
number (library property) 162
nw_to (library property) 33

O
Object (directive) 31, 65
object attributes 42, 44, 66, 156, 163,

241
object classes 64–68, 156, 230
object header 42
object names

external 31, 35, 42, 71, 121
internal ID 33, 35, 42, 43, 71, 152,

229
object properties 42, 43, 58, 66, 155,

163, 238
object stubs 208, 227
object tree 44, 174

changing 45, 57, 231
setting up initial state 36, 45, 156,

163
OBJECT_SCORE (library constant) 107
objects 31, 42–47, 155–157, 230
ofclass (object operator) 94, 156
on (library attribute) 140
open (library attribute) 36, 44, 108
openable (library attribute) 108
operators 151
or (keyword used in conditions) 73, 94
orders (library property) 133
out_to (library property) 33

P
parent (built-in routine) 157
parentheses 151
parse_name (library property) 128
parser 127, 177
Parser.h (library file) 30
phrase_matched (attribute) 163
PlaceInScope (library routine) 143
player (library variable) 42, 57, 63
player character 31, 76
PlayerTo (library routine) 55
plural (library property) 75
pluralname (library attribute) 71
pname (property) 129, 139, 163
pname.h (library extension) 128, 163,

170
print (statement) 52, 59, 107, 161

 INDEX

254

print rules 67
print_ret (statement) 55, 59, 107, 161
pronouns 107
proper (library attribute) 77
properties 42, 43, 58, 66, 155, 163, 238
Property (directive) 163
provides (object operator) 156

Q
quotes, single versus double 47, 165

R
RAIF 11, 12, 180
random (built-in routine) 118
real_location (library variable) 143
rec.arts.int-fiction (RAIF) 11, 12,

180
rec.games.int-fiction (RGIF) 11
Release (directive) 62
remove (statement) 156
Replace (directive) 128
return (statement) 52, 57, 59, 158, 161
return values 158
RGIF 11
ROOM_SCORE (library constant) 107
rooms 31
routines 30, 48, 157, 231

embedded 40, 50, 52, 92, 157, 231
entry point 159
library 55, 59, 159, 236
returning values 92, 93, 158
standalone 49, 92, 157, 231
with arguments 55, 59, 93, 158

Ruins.inf (example game) 21

S
s_obj (library object) 84
s_to (library property) 33
scenery (library attribute) 38, 44
score (library variable) 77, 97, 107
scored (library attribute) 107, 139
se_to (library property) 33
second (library variable) 60
self (library variable) 67, 70
semicolons 30, 31, 152, 154

Serial (directive) 62
short_name (library property) 121
sibling (built-in routine) 157
SimpleText editor 18, 24
source files 18, 24, 167

template 27, 30
standalone routines 49, 92, 157, 231
StartDaemon (library routine) 117
statement blocks 79
statements 40, 48, 152, 231

assignment 48
static (library attribute) 38, 44
STEF (mnemonic) 94, 158
StopDaemon (library routine) 117
Story (library constant) 29
story files 18, 19, 24, 167

versions 5 and 8 172
Strict mode 22, 171, 172, 174
strings of characters 29, 47, 165
stub objects 208, 227
supporter (library attribute) 38, 44
sw_to (library property) 33
switch (statement) 87
switchable (library attribute) 140
switches (compiler control) 171

unsetting 171
syntax colouring 24

T
TADS 9
TextEdit editor 18, 24
TextPad editor 23
thedark (library object) 143
topic (grammar token) 150
transparent (library attribute) 97, 125
true (built-in constant) 52, 60

U
u_to (library property) 33

 INDEX

255

V
variables

global 41
library 236
local 94, 158
property 43

Verb (directive) 99, 165, 175
VerbLib.h (library file) 30
verblibm.h (library file) 103
visited (library attribute) 70, 78

W
w_to (library property) 33
warnings (from the compiler) 167
white space 29, 159
“William Tell” story 13–16, 17,

61–104, 195–210
with (part of Object directive) 31, 42,

43, 155
with_key (library property) 120
words in the dictionary 35, 48, 165
worn (library attribute) 63

Z
Z-code files, see story files
Z-Machine 24, 25

 INDEX

256

