
Chapter I: The Inform Language

Language is a cracked kettle on which we beat out tunes for bears
to dance to, while all the time we long to move the stars to pity.

— from the letters of Gustave Flaubert (1821–1880)

§1 Routines

If you have already dipped into Chapter II and looked at how some
simple games and puzzles are designed, you’ll have seen that any
really interesting item needs to be given instructions on how to
behave, and that these instructions are written in a language of

their own. Chapter I is about that language, and its examples are mostly short
programs to carry out mundane tasks, undistracted by the lure of adventure.

§1.1 Getting started

Inform turns your description of a game (or other program), called the ‘‘source
code’’, into a ‘‘story file’’ which can be played (or run through) using an
‘‘interpreter’’. Interpreter programs are available for very many models of
computer, and if you can already play Infocom’s games or other people’s
Inform games on your machine then you already have an interpreter. There
are several interpreter programs available, in a sort of friendly rivalry. You
should be able to use whichever you prefer and even the oldest, most rickety
interpreter will probably not give serious trouble. A good sign to look out for
is compliance with the exacting Z-Machine Standards Document, agreed by an
informal committee of interested parties between 1995 and 1997. At time of
writing, the current version is Standard 1.0, dating from June 1997.

Turning source code into a story file is called ‘‘compilation’’, and Inform
itself is the compiler. It’s also supplied with a whole slew of ready-made source
code called the ‘‘library’’ and giving all the rules for adventure games. The
story of what the library does and how to work with it occupies most of this
manual, but not this chapter.



§ 

It isn’t practicable to give installation instructions here, because they vary
so much from machine to machine, but before you can go any further you’ll
need to install Inform: try downloading the software for your own machine
from ftp.gmd.de, which should either install itself or give instructions. A
useful test exercise would be to try to create the ‘‘Hello World’’ source code
given below, then to compile it with Inform, and finally ‘‘play’’ it on your
interpreter. (You can type up source code with any text editor or even with a
word-processor, provided you save its documents as ‘‘text only’’.)

Inform can run in a number of slightly different ways, controlled by
‘‘switches’’. The way to set these varies from one installation to another.
Note that this chapter assumes that you’re running Inform in ‘‘Strict mode’’,
controlled by the -S switch, which is normally set and ensures that helpful
error messages will be printed if a story file you have compiled does something
it shouldn’t.

§1.2 Hello World

Traditionally, all programming language tutorials begin by giving a program
which does nothing but print ‘‘Hello world’’ and stop. Here it is in Inform:

! "Hello world" example program
[Main;
print "Hello world^";

];

The text after the exclamation mark is a ‘‘comment’’, that is, it is text written
in the margin by the author to remind himself of what is going on here. Such
text means nothing to Inform, which ignores anything on the same line and
to the right of an exclamation mark. In addition, any gaps made up of line
and page breaks, tab characters and spaces are treated the same and called
‘‘white space’’, so the layout of the source code doesn’t much matter. Exactly
the same story file would be produced by:

[
Main ;

print
"Hello world^" ;

]
;



§ 

or, at the other extreme, by:

[Main;print"Hello world^";];

Laying out programs legibly is a matter of personal taste.

4 The exception to the rule about ignoring white space is inside quoted text, where
"Hello world^" and "Hello world^" are genuinely different pieces of text and are
treated as such. Inform treats text inside quotation marks with much more care than its
ordinary program material: for instance, an exclamation mark inside quotation marks
will not cause the rest of its line to be thrown away as a comment.

Inform regards its source code as a list of things to look at, divided up by
semicolons ;. These things are generally objects, of which more later. In this
case there is only one, called Main, and it’s of a special kind called a ‘‘routine’’.

Every program has to contain a routine called Main. When a story file is
set running the interpreter follows the first instruction in Main, and it carries
on line by line from there. This process is called ‘‘execution’’. Once the Main
routine is finished, the interpreter stops.

These instructions are called ‘‘statements’’, a traditional term in comput-
ing albeit an ungrammatical one. In this case there is only one statement:

print "Hello world^";

Printing is the process of writing text onto the computer screen. This statement
prints the two words ‘‘Hello world’’ and then skips the rest of the line (or ‘‘prints
a new-line’’), because the ^ character, in quoted text, means ‘‘new-line’’. For
example, the statement

print "Blue^Red^Green^";

prints up:

Blue
Red
Green

print is one of 28 different statements in the Inform language. Only about 20
of these are commonly used, but the full list is as follows:

box break continue do font for
give if inversion jump move new_line
objectloop print print_ret quit read remove
restore return rfalse rtrue save spaces
string style switch while



§ 

§1.3 Routine calls, errors and warnings

The following source code has three routines, Main, Rosencrantz and Hamlet:

[Main;
print "Hello from Elsinore.^";
Rosencrantz();

];
[Rosencrantz;

print "Greetings from Rosencrantz.^";
];
[Hamlet;

print "The rest is silence.^";
];

The resulting program prints up

Hello from Elsinore.
Greetings from Rosencrantz.

but the text ‘‘The rest is silence.’’ is never printed. Execution begins at Main,
and ‘‘Hello from Elsinore’’ is printed; next, the statement Rosencrantz()
causes the Rosencrantz routine to be executed. That continues until it ends
with the close-routine marker], whereupon execution goes back to Main just
after the point where it left off: since there is nothing more to do in Main, the
interpreter stops. Thus, Rosencrantz is executed but Hamlet is not.

In fact, when the above source code is compiled, Inform notices that
Hamlet is never needed and prints out a warning to that effect. The exact text
produced by Inform varies from machine to machine, but will be something
like this:

RISC OS Inform 6.20 (10th December 1998)
line 8: Warning: Routine "Hamlet" declared but not used
Compiled with 1 warning

Errors are mistakes in the source which cause Inform to refuse to compile it,
but this is only a warning. It alerts the programmer that a mistake may have
been made (because presumably the programmer has simply forgotten to put
in a statement calling Hamlet) but it doesn’t prevent the compilation from
taking place. Note that the opening line of the routine Hamlet occurs on the
8th line of the program above.



§ 

There are usually mistakes in a newly-written program and one goes
through a cycle of running a first draft through Inform, receiving a batch of
error messages, correcting the draft according to these messages, and trying
again. A typical error message would occur if, on line 3, we had mistyped
Rosncrantz() for Rosencrantz(). Inform would then have produced:

RISC OS Inform 6.20 (10th December 1998)
line 5: Warning: Routine "Rosencrantz" declared but not used
line 8: Warning: Routine "Hamlet" declared but not used
line 3: Error: No such constant as "Rosncrantz"
Compiled with 1 error and 2 warnings (no output)

The error message means that on line 3 Inform ran into a name which did
not correspond to any known quantity: it’s not the name of any routine, in
particular. A human reader would immediately realise what was intended,
but Inform doesn’t, so that it goes on to warn that the routine Rosencrantz
is never used. Warnings (and errors) are quite often produced as knock-on
effects of other mistakes, so it is generally a good idea to worry about fixing
errors first and warnings afterward.

Notice that Inform normally doesn’t produce the final story file if errors
occurred during compilation: this prevents it from producing damaged story
files.

§1.4 Numbers and other constants

Inform numbers are normally whole numbers in the range −32,768 to 32,767.
(Special programming is needed to represent larger numbers or fractions, as
we shall see when parsing phone numbers in Chapter IV.) There are three
notations for writing numbers in source code: here is an example of each.

-4205
$3f08
$$1000111010110

The difference is the radix, or number base, in which they are expressed. The
first is in decimal (base 10), the second hexadecimal (base 16, where the digits
after 9 are written a to f or A to F) and the third binary (base 2). Once
Inform has read in a number, it forgets which notation was used: for instance,
if the source code is altered so that $$10110 is replaced by 22, this makes no
difference to the story file produced.



§ 

A print statement can print numbers as well as text, though it always
prints them back in ordinary decimal notation. For example, the program

[Main;
print "Today’s number is ", $3f08, ".^";

];

prints up

Today’s number is 16136.

since 16,136 in base 10 is the same number as 3f08 in hexadecimal.
Literal quantities written down in the source code are called ‘‘constants’’.

Numbers are one kind; strings of text like "Today’s number is " are another.
A third kind are characters, given between single quotation marks. For
instance, ’x’ means ‘‘the letter lower-case x’’. A ‘‘character’’ is a single letter
or typewriter-symbol.

4 Just as $3f08 is a fancy way of writing the number 16,136, so ’x’ is a fancy way
of writing the number 120. The way characters correspond to numeric values is given
by a code called ZSCII, itself quite close to the traditional computing standard called
ASCII. 120 means ‘‘lower-case x’’ in ASCII, too, but ZSCII does its own thing with
non-English characters like ‘‘é’’. (You can type accented letters directly into source
code: see §1.11.) The available characters and their ZSCII values are laid out in
Table 2.

Inform also provides a few constants named for convenience, the most
commonly used of which are true and false. A condition such as ‘‘the
jewelled box is unlocked’’ will always have either the value true or the value
false.

4 Once again these are numbers in disguise. true is 1, false 0.

4 Inform is a language designed with adventure games in mind, where a player
regularly types in commands like ‘‘unlock the box’’, using a fairly limited vocabulary.
Writing a word like ’box’ in the source code, in single-quotation marks, adds it to the
‘‘dictionary’’ or vocabulary of the story file to be compiled. This is a kind of constant,
too: you can use it for writing code like ‘‘if the second word typed by the player is
’box’, then. . .’’.

4 If you need to lodge a single-letter word (say ‘‘h’’) into the dictionary, you can’t
put it in single quotes because then it would look like a character constant (’h’).
Instead, the best you can write is ’h//’. (The two slashes are sometimes used to
tack a little linguistic information onto the end of a dictionary word, so that in some
circumstances, see §29, you might want to write ’pears//p’ to indicate that ‘‘pears’’
must go into the dictionary marked as a plural. In this case the two slashes only serve
to clarify that it isn’t a character.)



§ 

4 You can put an apostrophe ’ into a dictionary word by writing it as ^: for instance
’helen^s’.

44 In two places where dictionary words often appear, the name slot of an object
definition and in grammar laid out with Verb and Extend, you’re allowed to use single
or double quotes interchangeably, and people sometimes do. For clarity’s sake, this
book tries to stick to using single quotes around dictionary words at all times. The
handling of dictionary words is probably the single worst-designed bit of syntax in
Inform, but you’re past it now.

§1.5 Variables

Unlike a literal number, a variable is able to vary. It is referred to by its name
and, like the ‘‘memory’’ key on some pocket calculators, remembers the last
value placed in it. For instance, if oil_left has been declared as a variable
(see below), then the statement

print "There are ", oil_left, " gallons remaining.^";

would cause the interpreter to print ‘‘There are 4 gallons remaining.’’ if
oil_left happened to be 4, and so on. It’s possible for the statement to be
executed many times and produce different text at different times.

Inform can only know the named quantity oil_left is to be a variable
if the source code has ‘‘declared’’ that it is. Each routine can declare its own
selection of up to 15 variables on its opening line. For example, in the program

[Main alpha b;
alpha = 2200;
b = 201;
print "Alpha is ", alpha, " while b is ", b, "^";

];

the Main routine has two variables, alpha and b.
Going back to the Main routine above, the = sign which occurs twice is an

example of an ‘‘operator’’: a notation usually made up of the symbols on the
non-alphabetic keys on a typewriter and which means something is to be done
with or calculated from the items it is written next to. Here = means ‘‘set equal
to’’. When the statement alpha = 2200; is interpreted, the current value of
the variable alpha is changed to 2,200. It then keeps that value until another
such statement changes it. All variables have the value 0 until they are first set.



§ 

The variables alpha and b are called ‘‘local variables’’ because they are
local to Main and are its private property. The source code

[Main alpha;
alpha = 2200;
Rival();

];
[Rival;
print alpha;

];

causes an error on the print statement in Rival, since alpha does not exist
there. Indeed, Rival could even have defined a variable of its own also called
alpha and this would have been an entirely separate variable.

· · · · ·

That’s now two kinds of name: routines have names and so have variables.
Such names, for instance Rival and alpha, are called ‘‘identifiers’’ and can
be up to 32 characters long. They may contain letters of the alphabet, decimal
digits or the underscore _ character (often used to impersonate a space). To
prevent them looking too much like numbers, though, they cannot start with
a decimal digit. The following are examples of legal identifiers:

turns_still_to_play room101 X

Inform ignores any difference between upper and lower case letters in such
names, so for instance room101 is the same name as Room101.

§1.6 Arithmetic, assignment and bitwise operators

The Inform language is rich with operators, as Table 1 shows. This section
introduces a first batch of them.

A general mixture of quantities and operators, designed to end up with a
single resulting quantity, is called an ‘‘expression’’. For example: the statement

seconds = 60*minutes + 3600*hours;

sets the variable seconds equal to 60 times the variable minutes plus 3600
times the variable hours. White space is not needed between operators and



§ 

‘‘operands’’ (the quantities they operate on, such as 3600 and hours). The
spaces on either side of the + sign were written in just for legibility.

The arithmetic operators are the simplest ones. To begin with, there are
+ (plus), - (minus), * (times) and / (divide by). Dividing one whole number
by another usually leaves a remainder: for example, 3 goes into 7 twice, with
remainder 1. In Inform notation,

7/3 evaluates to 2 and 7%3 evaluates to 1

the % operator meaning ‘‘remainder after division’’, usually called just ‘‘re-
mainder’’.

4 The basic rule is that a == (a/b)*b + (a%b), so that for instance:

13/5 == 2 13/-5 == -2 -13/5 == -2 -13/-5 == 2
13%5 == 3 13%-5 == 3 -13%5 == -3 -13%-5 == -3

•WARNING
Dividing by zero, and taking remainder after dividing by zero, are impossible.
You must write your program so that it never tries to. It’s worth a brief aside
here on errors, because dividing by zero offers an example of how and when
Inform can help the programmer to spot mistakes. The following source code:

[Main; print 73/0;];

won’t compile, because Inform can see that it definitely involves something
illegal:

line 2: Error: Division of constant by zero
> print 73/0;

However, Inform fails to notice anything amiss when compiling this:

[Main x; x = 0; print 73/x;];

and this source code compiles correctly. When the resulting story file is
interpreted, however, the following will be printed:

[** Programming error: tried to divide by zero **]

This is only one of about fifty different programming errors which can turn up
when a story file is interpreted. As in this case, they arise when the interpreter
has accidentally been asked to do something impossible. The moral is that just
because Inform compiles source code without errors, it does not follow that
the story file does what the programmer intended.



§ 

4 Since an Inform number has to be between−32,768 and 32,767, some arithmetic
operations overflow. For instance, multiplying 8 by 5,040 ought to give 40,320, but
this is over the top and the answer is instead −25,216. Unlike dividing by zero, causing
arithmetic overflows is perfectly legal. Some programmers make deliberate use of
overflows, for instance to generate apparently random numbers.

44 Only apparently random, because overflows are perfectly predictable. Inform story
files store numbers in sixteen binary digits, so that when a number reaches 216 = 65,536
it clocks back round to zero (much as a car’s odometer clocks over from 999999 miles
to 000000). Now, since 65,535 is the value that comes before 0, it represents −1, and
65,534 represents −2 and so on. The result is that if you start with zero and keep
adding 1 to it, you get 1, 2, 3, . . . , 32,767 and then −32,768, −32,767, −32,766, . . .,
−1 and at last zero again. Here’s how to predict an overflowing multiplication, say:
first, multiply the two numbers as they stand, then keep adding or subtracting 65,536
from the result until it lies in the range −32,768 to 32,767. For example, 8 multiplied
by 5,040 is 40,320, which is too big, but we only need to subtract 65,536 once to bring
it into range, and the result is −25,216.

· · · · ·

In a complicated expression the order in which the operators work may affect
the result. As most human readers would, Inform works out both of

3 + 2 * 6
2 * 6 + 3

as 15, because the operator * has ‘‘precedence’’ over + and so is acted on first.
Brackets may be used to overcome this:

(3 + 2) * 6
2 * (6 + 3)

evaluate to 30 and 18 respectively. Each operator has such a ‘‘precedence
level’’. When two operators have the same precedence level (for example, +
and - are of equal precedence) calculation is (almost always) ‘‘left associative’’,
that is, carried out left to right. So the notation a-b-c means (a-b)-c and not
a-(b-c). The standard way to write formulae in maths is to give + and - equal
precedence, but lower than that of * and / (which are also equal). Inform
agrees and also pegs % equal to * and /.

The last purely arithmetic operator is ‘‘unary minus’’. This is also written
as a minus sign - but is not quite the same as subtraction. The expression:

-credit



§ 

means the same thing as 0-credit. The operator - is different from all
those mentioned so far because it operates only on one value. It has higher
precedence than any of the five other arithmetic operators. For example,

-credit - 5

means (-credit) - 5 and not -(credit - 5).
One way to imagine precedence is to think of it as glue attached to the

operator. A higher level means stronger glue. Thus, in

3 + 2 * 6

the glue around the * is stronger than that around the +, so that 2 and 6 belong
bound to the *.

4 Some languages have a ‘‘unary plus’’ too, but Inform hasn’t.

· · · · ·
Some operators don’t just work out values but actually change the current
settings of variables: expressions containing these are called ‘‘assignments’’.
One such is ‘‘set equals’’:

alpha = 72

sets the variable alpha equal to 72. Like + and the others, it also comes up
with an answer: which is the value it has set, in this case 72.

The other two assignment operators are ++ and --, which will be familiar
to any C programmer. They are unary operators, and mean ‘‘increase (or
decrease) the value of this variable by one’’. If the ++ or -- goes before the
variable, then the increase (or decrease) happens before the value is read off;
if after, then after. For instance, if variable currently has the value 12 then:

variable++ evaluates to 12 and leaves variable set to 13;
++variable evaluates to 13 and leaves variable set to 13;
variable-- evaluates to 12 and leaves variable set to 11;
--variable evaluates to 11 and leaves variable set to 11.

These operators are provided as convenient shorthand forms, since their effect
could usually be achieved in other ways. Note that expressions like

500++ (4*alpha)-- 34 = beta

are quite meaningless: the values of 500 and 34 cannot be altered, and Inform
knows no way to adjust alpha so as to make 4*alpha decrease by 1. All three
will cause compilation errors.



§ 

· · · · ·

The ‘‘bitwise operators’’ are provided for manipulating binary numbers on
a digit-by-digit basis, something which is only done in programs which are
working with low-level data or data which has to be stored very compactly.
Inform provides &, bitwise AND, |, bitwise OR and ~, bitwise NOT. For each
digit, such an operator works out the value in the answer from the values in
the operands. Bitwise NOT acts on a single operand and results in the number
whose i-th binary digit is the opposite of that in the operand (a 1 for a 0, a 0
for a 1). Bitwise AND (and OR) acts on two numbers and sets the i-th digit to
1 if both operands have (either operand has) i-th digit set. All Inform numbers
are sixteen bits wide. So:

$$10111100 & $$01010001 == $$0000000000010000
$$10111100 | $$01010001 == $$0000000011111101

~ $$01010001 == $$1111111110101110

§1.7 Arguments and Return Values

Here is one way to imagine how an Inform routine works: you feed some values
into it, it then goes away and works on them, possibly printing some text out
or doing other interesting things, and it then returns with a single value which
it gives back to you. As far as you’re concerned, the transaction consists of
turning a group of starting values, called ‘‘arguments’’, into a single ‘‘return
value’’:

A1, A2, A3, . . . −→ Routine −→ R

The number of arguments needed varies with the routine: some, like Main
and the other routines in this chapter so far, need none at all. (Others need
anything up to seven, which is the maximum number allowed by Inform.) On
the other hand, every routine without exception produces a return value. Even
when it looks as if there isn’t one, there is. For example:

[Main;
Sonnet();

];
[Sonnet;

print "When to the sessions of sweet silent thought^";
print "I summon up remembrance of things past^";

];



§ 

Main and Sonnet both take no arguments, but they both return a value: as it
happens this value is true, in the absence of any instruction to the contrary.
(As was mentioned earlier, true is the same as the number 1.) The statement
Sonnet(); calls Sonnet but does nothing with the return value, which is just
thrown away. But if Main had instead been written like so:

[Main;
print Sonnet();

];

then the output would be

When to the sessions of sweet silent thought
I summon up remembrance of things past
1

because now the return value, 1, is not thrown away: it is printed out.
You can call it a routine with arguments by writing them in a list,

separated by commas, in between the round brackets. For instance, here is a
call supplying two arguments:

Weather("hurricane", 12);

When the routine begins, the value "hurricane" is written into its first local
variable, and the value 12 into its second. For example, suppose:

[Weather called force;
print "I forecast a ", (string) called, " measuring force ",

force, " on the Beaufort scale.^";
];

Leaving the details of the print statement aside for the moment, the call to
this routine produces the text:

I forecast a hurricane measuring force 12 on the Beaufort scale.

The Weather routine finishes when its] end-marker is reached, whereupon
it returns true, but any of the following statements will finish a routine the
moment they are reached:

rfalse; which returns false,
rtrue; which returns true,



§ 

return; which also returns true,
return 〈value〉; which returns 〈value〉.

For example, here is a routine to print out the cubes of the numbers 1 to 5:

[Main;
print Cube(1), " ";
print Cube(2), " ";
print Cube(3), " ";
print Cube(4), " ";
print Cube(5), "^";

];
[Cube x;

return x*x*x;
];

When interpreted, the resulting story file prints up the text:

1 8 27 64 125

4 Any ‘‘missing arguments’’ in a routine call are set equal to zero, so the call Cube()
is legal and does the same as Cube(0). What you mustn’t do is to give too many
arguments: Cube(1,2) isn’t possible because there is no variable to put the 2 into.

4 A hazardous, but legal and sometimes useful practice is for a routine to call itself.
This is called recursion. The hazard is that the following mistake can be made, probably
in some much better disguised way:

[Disaster; return Disaster();];

Despite the reassuring presence of the word return, execution is tied up forever, unable
to finish evaluating the return value. The first call to Disaster needs to make a second
before it can finish, the second needs to make a third, the third. . . and so on. (Actually,
for ‘‘forever’’ read ‘‘until the interpreter runs out of stack space and halts’’, but that’s
little comfort.)

§1.8 Conditions: if, true and false

The facilities described so far make Inform about as powerful as the average
small programmable calculator. To make it a proper programming language, it
needs much greater flexibility of action. This is provided by special statements



§ 

which control whether or not, and if so how many times or in what order,
other statements are executed. The simplest is if:

if (〈condition〉) 〈statement〉

which executes the 〈statement〉 only if the 〈condition〉, when it is tested, turns
out to be true. For example, when the statement

if (alpha == 3) print "Hello";

is executed, the word ‘‘Hello’’ is printed only if the variable alpha currently
has value 3. It’s important not to confuse the == (test whether or not equal
to) with the = operator (set equal to). But because it’s easy to write something
plausible like

if (alpha = 3) print "Hello";

by accident, which always prints ‘‘Hello’’ because the condition evaluates to 3
which is considered non-zero and therefore true (see below), Inform will issue
a warning if you try to compile something like this. (‘=’ used as condition: ‘==’
intended?)

· · · · ·

Conditions are always given in brackets. There are 12 different conditions in
Inform (see Table 1), six arithmetic and half a dozen to do with objects. Here
are the arithmetic ones:

(a == b) a equals b
(a ~= b) a doesn’t equal b
(a >= b) a is greater than or equal to b
(a <= b) a is less than or equal to b
(a > b) a is greater than b
(a < b) a is less than b

A useful extension to this set is provided by the special operator or, which
gives alternative possibilities. For example,

if (alpha == 3 or 4) print "Scott";
if (alpha ~= 5 or 7 or 9) print "Amundsen";

where two or more values are given with the word or between. ‘‘Scott’’ is
printed if alpha has value either 3 or 4, and ‘‘Amundsen’’ if the value of alpha



§ 

is not 5, is not 7 and is not 9. or can be used with any condition, and any
number of alternatives can be given. For example

if (player in Forest or Village or Building) ...

often makes code much clearer than writing three separate conditions out. Or
you might want to use

if (x > 100 or y) ...

to test whether x is bigger than the minimum of 100 and y.
Conditions can also be built up from simpler ones using the three logical

operators &&, || and ~~, pronounced ‘‘and’’, ‘‘or’’ and ‘‘not’’. For example,

if (alpha == 1 && (beta > 10 || beta < -10)) print "Lewis";
if (~~(alpha > 6)) print "Clark";

‘‘Lewis’’ is printed if alpha equals 1 and beta is outside the range −10 to 10;
‘‘Clark’’ is printed if alpha is less than or equal to 6.

4 && and || work left to right and stop evaluating conditions as soon as the final
outcome is known. So for instance if (A && B) ... will work out A first. If this is
false, there’s no need to work out B. This is sometimes called short-cut evaluation
and can be convenient when working out conditions like

if (x~=nothing && TreasureDeposited(x)==true) ...

where you don’t want TreasureDeposited to be called with the argument nothing.

· · · · ·
Conditions are expressions like any other, except that their values are always
either true or false. You can write a condition as a value, say by copying it
into a variable like so:

lower_caves_explored = (Y2_Rock_Room has visited);

This kind of variable, storing a logical state, is traditionally called a ‘‘flag’’.
Flags are always either true or false: they are like the red flag over the beach
at Lee-on-Solent in Hampshire, which is either flying, meaning that the army
is using the firing range, or not flying, when it is safe to walk along the shore.
Flags allow you to write natural-looking code like:

if (lower_caves_explored) print "You’ve already been that way.";

The actual test performed by if (x) ... is x~=0, not that x==true, because
all non-zero quantities are considered to represent truth whereas only zero
represents falsity.



§ 

· · · · ·

4 Now that the if statement is available, it’s possible to give an example of a
recursion that does work:

[GreenBottles n;
print n, " green bottles, standing on a wall.^";
if (n == 0) print "(And an awful lot of broken glass.)^";
else {

print "And if one green bottle should accidentally fall^";
print "There’d be ", n-1, " green bottles.^";
return GreenBottles(n-1);

}
];

Try calling GreenBottles(10). It prints the first verse of the song, then before returning
it calls GreenBottles(9) to print the rest. So it goes on, until GreenBottles(0). At
this point n is zero, so the text ‘‘(And an awful lot of broken glass.)’’ is printed
for the first and only time. GreenBottles(0) then returns back to GreenBottles(1),
which returns to GreenBottles(2), which. . . and so on until GreenBottles(10) finally
returns and the song is completed.

44 Thus execution reached ‘‘ten routines deep’’ before starting to return back up, and
each of these copies of GreenBottles had its own private copy of the variable n. The
limit to how deep you are allowed to go varies from one player’s machine to another,
but here is a rule of thumb, erring on the low side for safety’s sake. (On a standard
interpreter it will certainly be safe.) Total up 4 plus the number of its variables for each
routine that needs to be running at the same time, and keep the total beneath 1,000.
Ten green bottles amounts only to a total of 10× 5 = 50, and as it seems unlikely that
anyone will wish to read the lyrics to ‘‘two hundred and one green bottles’’ the above
recursion is safe.

§1.9 Code blocks, else and switch

A feature of all statements choosing what to do next is that instead of just
giving a single 〈statement〉, one can give a list of statements grouped together
into a unit called a ‘‘code block’’. Such a group begins with an open brace {
and ends with a close brace }. For example,

if (alpha > 5) {
v = alpha*alpha;
print "The square of alpha is ", v, ".^";

}



§ 

If alpha is 3, nothing is printed; if alpha is 9,

The square of alpha is 81.

is printed. (The indentation used in the source code, like all points of source
code layout, is a matter of personal taste.†) In some ways, code blocks are like
routines, and at first it may seem inconsistent to write routines between [and
] brackets and code blocks between braces { and }. However, code blocks
cannot have private variables of their own and do not return values; and it is
possible for execution to break out of code blocks again, or to jump from block
to block, which cannot happen with routines.

· · · · ·

An if statement can optionally have the form

if (〈condition〉) 〈statement1〉 else 〈statement2〉

whereupon 〈statement1〉 is executed if the condition is true, and 〈statement2〉
if it is false. For example,

if (alpha == 5) print "Five."; else print "Not five.";

Note that the condition is only checked once, so that the statement

if (alpha == 5) {
print "Five.";
alpha = 10;

}
else print "Not five.";

cannot ever print both ‘‘Five’’ and then ‘‘Not five’’.

4 The else clause has a snag attached: the problem of ‘‘hanging elses’’. In the
following, which if statement does the else attach to?

if (alpha == 1) if (beta == 2)
print "Clearly if alpha=1 and beta=2.^";

else
print "Ambiguous.^";

† Almost everybody indents each code block as shown, but the position of the open
brace is a point of schism. This book adopts the ‘‘One True Brace Style’’, as handed
down in such sacred texts as the original Unix source code and Kernighan and Ritchie’s
textbook of C. Other conventions place the open brace vertically above its matching
closure, perhaps on its own otherwise blank line of source code.



§ 

Without clarifying braces, Inform pairs an else to the most recent if. (Much as
the U.S. Supreme Court rigorously interprets muddled laws like ‘‘all animals must be
licensed, except cats, other than those under six months old’’ by applying a so-called
Last Antecedent Rule to ambiguous qualifications like this ‘‘other than. . .’’.) The
following version is much better style:

if (alpha == 1) {
if (beta == 2)

print "Clearly if alpha=1 and beta=2.^";
else

print "Clearly if alpha=1 but beta not 2.^";
}

· · · · ·

The if . . . else . . . construction is ideal for switching execution between two
possible ‘‘tracks’’, like railway signals, but it is a nuisance trying to divide
between many different outcomes this way. To follow the analogy, the switch
construction is like a railway turntable.

print "The train on platform 1 is going to ";
switch (DestinationOnPlatform(1)) {

1: print "Dover Priory.";
2: print "Bristol Parkway.";
3: print "Edinburgh Waverley.";
default: print "a siding.";

}

The default clause is optional but must be placed last if at all: it is executed
when the original expression matches none of the other values. Otherwise
there’s no obligation for these clauses to be given in numerical or any other
order. Each possible alternative value must be a constant, so

switch (alpha) {
beta: print "The variables alpha and beta are equal!";

}

will produce a compilation error. (But note that in a typical game, the name
of an object or a location, such as First_Court, is a constant, so there is no
problem in quoting this as a switch value.)



§ 

Any number of outcomes can be specified, and values can be grouped
together in lists separated by commas, or in ranges like 3 to 6. For example:

print "The mission Apollo ", num, " made ";
switch (num) {

7, 9: print "a test-flight in Earth orbit.";
8, 10: print "a test-flight in lunar orbit.";
11, 12, 14 to 17: print "a landing on the Moon.";
13: print "it back safely after a catastrophic explosion.";

}

Each clause is automatically a code block, so a whole run of statements can be
given without the need for any braces { and } around them.

4 If you’re used to the C language, you might want to note a major difference:
Inform doesn’t have ‘‘case fall-through’’, with execution running from one case to the
next, so there’s no need to use break statements.

44 A good default clause for the above example would be a little complicated:
Apollo 1 was lost in a ground fire, causing a shuffle so that 2 and 3 never happened,
while automatic test-flights of the Saturn rocket were unofficially numbered 4 to 6.
Apollo 20 was cancelled to free up a heavy launcher for the Skylab station, and 18 and
19 through budget cuts, though the Apollo/Soyuz Test Project (1975) is sometimes
unhistorically called Apollo 18. The three Apollo flights to Skylab were called Skylab 2,
3 and 4. All six Mercury capsules were numbered 7, while at time of writing the Space
Shuttle mission STS-88 has just landed and the next to launch, in order, are projected
to be 96, 93, 99, 103, 101 and 92. NASA has proud traditions.

§1.10 while, do . . . until, for, break, continue

The other four Inform control constructions are all ‘‘loops’’, that is, ways to
repeat the execution of a given statement or code block. Discussion of one of
them, called objectloop, is deferred until §3.4.

The two basic forms of loop are while and do . . . until:

while (〈condition〉) 〈statement〉
do 〈statement〉 until (〈condition〉)

The first repeatedly tests the condition and, provided it is still true, executes
the statement. If the condition is not even true the first time, the statement is



§ 

never executed even once. For example:
[SquareRoot n x;
while (x*x < n) x = x + 1;
if (x*x == n) return x;
return x - 1;

];

which is a simple if rather inefficient way to find square roots, rounded down
to the nearest whole number. If SquareRoot(200) is called, then x runs up
through the values 0, 1, 2, . . . , 14, 15, at which point x*x is 225: so 14 is
returned. If SquareRoot(0) is called, the while condition never holds at all
and so the return value is 0, made by the if statement.

The do . . . until loop repeats the given statement until the condition is
found to be true. Even if the condition is already satisfied, like (true), the
statement is always executed the first time through.

· · · · ·
One particular kind of while loop is needed so often that there is an abbrevia-
tion for it, called for. This can produce any loop in the form

〈start〉
while (〈condition〉) {

. . .
〈update〉

}

where 〈start〉 and 〈update〉 are expressions which actually do something, such
as setting a variable. The notation to achieve this is:

for (〈start〉 : 〈condition〉 : 〈update〉) . . .

Note that if the condition is false the very first time, the loop is never executed.
For instance, this prints nothing:

for (counter=1 : counter<0 : counter++) print "Banana";

Any of the three parts of a for statement can be omitted. If the condition is
missed out, it is assumed always true, so that the loop will continue forever,
unless escaped by other means (see below).

For example, here is the while version of a common kind of loop:
counter = 1;
while (counter <= 10) {

print counter, " ";
counter++;

}



§ 

which produces the output ‘‘1 2 3 4 5 6 7 8 9 10’’. (Recall that counter++
adds 1 to the variable counter.) The abbreviated version is:

for (counter=1 : counter<=10 : counter++)
print counter, " ";

4 Using commas, several assignments can be joined into one. For instance:

i++, score=50, j++

is a single expression. This is never useful in ordinary code, where the assignments can
be divided up by semicolons in the usual way. But in for loops it can be a convenience:

for (i=1, j=5: i<=5: i++, j--) print i, " ", j, ", ";

produces the output ‘‘1 5, 2 4, 3 3, 4 2, 5 1,’’.

44 Comma , is an operator, and moreover is the one with the lowest precedence
level. The result of a,b is always b, but a and b are both evaluated and in that order.

· · · · ·

On the face of it, the following loops all repeat forever:

while (true) 〈statement〉
do 〈statement〉 until (false)
for (::) 〈statement〉

But there is always an escape. One way is to return from the current routine.
Another is to jump to a label outside the loop (see below), though if one only
wants to escape the current loop then this is seldom good style. It’s neatest to
use the statement break, which means ‘‘break out of’’ the current innermost
loop or switch statement: it can be read as ‘‘finish early’’. All these ways out
are entirely safe, and there is no harm in leaving a loop only half-done.

The other simple statement used inside loops is continue. This causes
the current iteration to end immediately, but the loop then continues. In
particular, inside a for loop, continue skips the rest of the body of the loop
and goes straight to the 〈update〉 part. For example,

for (i=1: i<=5: i++) {
if (i==3) continue;
print i, " ";

}

will output ‘‘1 2 4 5’’.



§ 

· · · · ·

4 The following routine is a curious example of a loop which, though apparently
simple enough, contains a trap for the unwary.

[RunPuzzle n count;
do {

print n, " ";
n = NextNumber(n);
count++;

}
until (n==1);
print "1^(taking ", count, " steps to reach 1)^";

];
[NextNumber n;

if (n%2 == 0) return n/2; ! If n is even, halve it
return 3*n + 1; ! If n is odd, triple and add 1

];

The call RunPuzzle(10), for example, results in the output

10 5 16 8 4 2 1
(taking 6 steps to reach 1)

The definition of RunPuzzle assumes that, no matter what the initial value of n, enough
iteration will end up back at 1. If this did not happen, the interpreter would lock up
into an infinite loop, printing numbers forever. The routine is apparently very simple,
so it would seem reasonable that by thinking carefully enough about it, we ought to
be able to decide whether or not it will ever finish. But this is not so easy as it looks.
RunPuzzle(26) takes ten steps, but there again, RunPuzzle(27) takes 111. Can this
routine ever lock up into an infinite loop, or not?

44 The answer, which caught the author by surprise, is: yes. Because of Inform’s
limited number range, eventually the numbers reached overflow 32,767 and Inform
interprets them as negative – and quickly homes in on the cycle −1,−2,−1,−2, . . .
This first happens to RunPuzzle(447). Using proper arithmetic, unhindered by a
limited number range, the answer is unknown. As a student in Hamburg in the 1930s,
Lothar Collatz conjectured that every positive n eventually reaches 1. Little progress
has been made (though it is known to be true if n is less than 240), and even Paul Erdös
said of it that ‘‘Mathematics is not yet ready for such problems.’’ See Jeffrey Lagarias’s
bibliography The 3x + 1 Problem and its Generalisations (1996).



§ 

§1.11 How text is printed

Adventure games take a lot of trouble over printing, so Inform is rich in features
to make printing elegant output more easy. During story-file interpretation,
your text will automatically be broken properly at line-endings. Inform story
files are interpreted on screen displays of all shapes and sizes, but as a
programmer you can largely ignore this. Moreover, Inform itself will compile a
block of text spilling over several source-code lines into normally-spaced prose,
so:

print "Here in her hairs
the painter plays the spider, and hath woven
a golden mesh t’untrap the hearts of men
faster than gnats in cobwebs";

results in the line divisions being replaced by a single space each. The text
printed is: ‘‘Here in her hairs the painter plays the spider, and hath woven a
golden mesh. . .’’ and so on. There is one exception to this: if a line finishes
with a ^ (new-line) character, then no space is added.

4 You shouldn’t type double-spaces after full stops or other punctuation, as this can
spoil the look of the final text on screen. In particular, if a line break ends up after
the first space of a double-space, the next line will begin with the second space. Since
many typists habitually double-space, Inform has a switch -d1 which contracts ‘‘. ’’
to ‘‘. ’’ wherever it occurs, and then a further setting -d2 which also contracts ‘‘! ’’ to
‘‘! ’’ and ‘‘? ’’ to ‘‘? ’’. A modest warning, though: this can sometimes make a mess
of diagrams. Try examining the 1851 Convention on Telegraphy Morse Code chart
in ‘Jigsaw’, for instance, where the present author inadvertently jumbled the spacing
because -d treated the Morse dots as full stops.

· · · · ·
When a string of text is printed up with print, the characters in the string
normally appear exactly as given in the source code. However, four characters
have special meanings. ^ means ‘‘print a new-line’’. The tilde character ~,
meaning ‘‘print a quotation mark’’, is needed since quotation marks otherwise
finish strings. Thus,

print "~Look,~ says Peter. ~Socks can jump.~^Jane agrees.^";

is printed as

‘‘Look,’’ says Peter. ‘‘Socks can jump.’’
Jane agrees.



§ 

The third remaining special character is @, occasionally used for accented
characters and other unusual effects, as described below. Finally, \ is reserved
for ‘‘folding lines’’, and is no longer needed but is retained so that old programs
continue to work.

4 If you want to print an actual ~, ^, @ or \, you may need one of the following
‘‘escape sequences’’. A double @ sign followed by a decimal number means the character
with the given ZSCII value, so in particular

@@92 comes out as ‘‘\’’ @@64 comes out as ‘‘@’’
@@94 comes out as ‘‘^’’ @@126 comes out as ‘‘~’’

· · · · ·
A number of Inform games have been written in European languages other
than English, and even English-language games need accented letters from
time to time. Inform can be told via command-line switches to assume that
quoted text in the source code uses any of the ISO 8859-1 to -9 character sets,
which include West and Central European forms, Greek, Arabic, Cyrillic and
Hebrew. The default is ISO Latin-1, which means that you should be able to
type most standard West European letters straight into the source code.

4 If you can’t conveniently type foreign accents on your keyboard, or you want to
make a source code file which could be safely taken from a PC to a Macintosh or vice
versa, you can instead type accented characters using @. (The PC operating system
Windows and Mac OS use incompatible character sets, but this incompatibility would
only affect your source code. A story file, once compiled, behaves identically on PC
and Macintosh regardless of what accented letters it may contain.) Many accented
characters can be written as @, followed by an accent marker, then the letter on which
the accent appears:

@^ put a circumflex on the next letter: a e i o u A E I O or U
@’ put an acute on the next letter: a e i o u y A E I O U or Y
@‘ put a grave on the next letter: a e i o u A E I O or U
@: put a diaeresis on the next letter: a e i o u A E I O or U
@c put a cedilla on the next letter: c or C
@~ put a tilde on the next letter: a n o A N or O
@\ put a slash on the next letter: o or O
@o put a ring on the next letter: a or A

A few other letter-forms are available: German ß (@ss), ligatures (@oe, @ae, @OE, @AE),
Icelandic ‘‘thorn’’ @th and ‘‘eth’’ @et, a pounds-sterling sign (@LL), Spanish inverted
punctuation (@!! and @??) and continental European quotation marks (@<< and @>>):
see Table 2. For instance,

print "Les @oeuvres d’@AEsop en fran@ccais, mon @’el@‘eve!";
print "Na@:ive readers of the New Yorker re@:elected Mr Clinton.";
print "Gau@ss first proved the Fundamental Theorem of Algebra.";



§ 

Accented characters can also be referred to as constants, like other characters. Just as
’x’ represents the character lower-case-X, so ’@^A’ represents capital-A-circumflex.

44 It takes a really, really good interpreter with support built in for Unicode and
access to the proper fonts to use such a story file, but in principle you can place any
Unicode character into text by quoting its Unicode value in hexadecimal. For instance,
@{a9} produces a copyright sign (Unicode values between $0000 and $00ff are equal
to ISO Latin1 values); @{2657} is a White bishop chess symbol; @{274b} is a ‘‘heavy
eight teardrop-spoked propeller asterisk’’; @{621} is the Arabic letter Hamza, and so
on for around 30,000 more, including vast sets for Pacific Rim scripts and even for
invented ones like Klingon or Tolkien’s Elvish. Of course none of these new characters
are in the regular ZSCII set, but ZSCII is configurable using Inform’s Zcharacter
directive. See §36 for more.

· · · · ·

4 The remaining usage of @ is hacky but powerful. Suppose you are trying to
implement some scenes from Infocom’s spoof of 1930s sci-fi, ‘Leather Goddesses of
Phobos’, where one of the player’s companions has to be called Tiffany if the player is
female, and Trent if male. The name turns up in numerous messages and it would be
tiresome to keep writing

if (female_flag) print "Tiffany"; else print "Trent";

Instead you can use one of Inform’s 32 ‘‘printing-variables’’ @00 to @31. When the text
@14 is printed, for instance, the contents of string 14 are substituted in. The contents
of string 14 can be set using the string statement, so:

if (female_flag) string 14 "Tiffany"; else string 14 "Trent";
...
print "You offer the untangling cream to @14, who whistles.^";

The value specified by a string statement has to be a literal, constant bit of text. There
are really hacky ways to get around this, but if you needed to then you’d probably be
better off with a different solution anyway.

§1.12 The print and print_ret statements

The print and print_ret statements are almost identical. The difference is
that the second prints out a final and extra new-line character, and then causes
a return from the current routine with the value true. Thus, print_ret should
be read as ‘‘print this, print a new-line and then return true’’, and so

print_ret "That’s enough of that.";



§ 

is equivalent to

print "That’s enough of that.^"; rtrue;

As an abbreviation, it can even be shortened to:

"That’s enough of that.";

Although Inform newcomers are often confused by the fact that this innocently
free-standing bit of text actually causes a return from the current routine, it’s
an abbreviation which pays dividends in adventure-writing situations:

if (fuse_is_lit) { deadflag = true; "The bomb explodes!"; }
"Nothing happens.";

Note that if the source code:
[Main;

"Hello, and now for a number...";
print 21*764;

];

is compiled, Inform will produce the warning message:
line 3: Warning: This statement can never be reached.
> print 21*764;

because the bare string on line 2 is printed using print_ret: so the text is
printed, then a new-line is printed, and then a return takes place immediately.
As the warning message indicates, there is no way the statement on line 3 can
ever be executed.

So what can be printed? The answer is a list of terms, separated by
commas. For example,

print "The value is ", value, ".";

contains three terms. A term can take the following forms:

〈a value〉 printed as a (signed, decimal) number
〈text in double-quotes〉 printed as text
(〈rule〉) 〈value〉 printed according to some special rule

Inform provides a stock of special printing rules built-in, and also allows the
programmer to create new ones. The most important rules are:

(char) print out the character which this is the ZSCII code for
(string) print out this string
(address) print out the text of this dictionary word
(name) print out the name of this object (see §3)

Games compiled with the Inform library have several other printing rules built-
in (like print (The) ...), but as these aren’t part of the Inform language as
such they will be left until §26.



§ 

4 print (string) ... requires a little explanation. Of the following lines, the first
two print out ‘‘Hello!’’ but the third prints only a mysterious number:

print (string) "Hello!";
x = "Hello!"; print (string) x;
x = "Hello!"; print x;

This is because strings are internally represented by mysterious numbers. print
(string) means ‘‘interpret this value as the mysterious number of a string, and print
out that string’’: it is liable to give an error, or in some cases print gibberish, if applied
to a value which isn’t the mysterious number of any string.

· · · · ·
Any Inform program can define its own printing rules simply by providing a
routine whose name is the same as that of the rule. For example, the following
pair of routines provides for printing out a value as a four-digit, unsigned
hexadecimal number:

[hex x y;
y = (x & $7f00) / $100;
if (x<0) y = y + $80;
x = x & $ff;
print (hexdigit) y/$10, (hexdigit) y,

(hexdigit) x/$10, (hexdigit) x;
];
[hexdigit x;

x = x % $10;
switch (x) {

0 to 9: print x;
10: print "a"; 11: print "b"; 12: print "c";
13: print "d"; 14: print "e"; 15: print "f";

}
];

You can paste these two routines into any Inform source code to make these
new printing rules hex and hexdigit available to that code. For example,
print (hex) 16339; will then print up ‘‘3fd3’’, and print (hex) -2; will
print ‘‘fffe’’. Something to look out for is that if you inadvertently write

print hex(16339);

then the text printed will be ‘‘3fd31’’, with a spurious 1 on the end: because
you’ve printed out the return value of the routine hex, which was true, or in
other words 1.



§ 

§1.13 Other printing statements

Besides print and print_ret, several other statements can also be used for
printing.

new_line

prints a new-line, otherwise known as a carriage return (named for the carriage
which used to move paper across a typewriter). This is equivalent to

print "^"

but is a convenient abbreviation. Similarly,

spaces 〈number〉

prints a sequence of the given number of spaces.

box 〈string1〉 . . .〈stringn〉

displays a reverse-video panel in the centre of the screen, containing each
string on its own line. For example, the statement

box "Passio domini nostri" "Jesu Christi Secundum" "Joannem";

displays the opening line of the libretto to Arvo Pärt’s ‘St John Passion’:

Passio domini nostri
Jesu Christi Secundum
Joannem

· · · · ·
Text is normally displayed in an unembellished but legible type intended to
make reading paragraphs comfortable. Its actual appearance will vary from
machine to machine running the story file. On most machines, it will be
displayed using a ‘‘font’’ which is variably-pitched, so that for example a ‘‘w’’
will be wider on-screen than an ‘‘i’’. Such text is much easier to read, but
makes it difficult to print out diagrams. The statement

print "+------------+
^+ Hello +
^+------------+^";



§ 

will print something irregular if the letters in ‘‘Hello’’ and the characters ‘‘-’’,
‘‘+’’ and ‘‘ ’’ (space) do not all have the same width on-screen:

+------------+
+ Hello +
+------------+

Because one sometimes does want to print such a diagram, to represent a
sketch-map, say, or to print out a table, the statement font is provided:

font on
font off

font off switches into a fixed-pitch display style. It is now guaranteed that
the interpreter will print all characters at the same width. font on restores the
usual state of affairs.

In addition, you can choose the type style from a small set of possibilities:
roman (the default), boldface, underlined or otherwise emphasized (some
interpreters will use italic for this), reverse-colour:

style roman
style bold
style underline
style reverse

‘‘Reverse colour’’ would mean, for instance, yellow on blue if the normal
text appearance happened to be blue on yellow. An attempt will be made to
approximate these effects whatever kind of machine is running the story file.

4 Changes of foreground and background colours, so memorably used in games
like Adam Cadre’s ‘Photopia’, can be achieved with care using Z-machine assembly
language. See §42.

§1.14 Generating random numbers

Inform provides a small stock of functions ready-defined, but which are used
much as other routines are. As most of these concern objects, only one will be
give here: random, which has two forms:

random(N)



§ 

returns a random number in the range 1, 2, . . . , N, each of these outcomes
being (in theory) equally likely. N should be a positive number, between 1 and
32,767, for this to work properly.

random(〈two or more constant quantities, separated by commas〉)

returns a random choice from the given selection of constant values. Thus,

print (string) random("red", "blue", "green", "violet");

prints the name of one of these four colours at random. Likewise,

print random(13, 17);

has a 50% chance of printing ‘‘13’’, and a 50% chance of printing ‘‘17’’.

4 Random numbers are produced inside the interpreter by a ‘‘generator’’ which is
not truly random in its behaviour. Instead, the sequence of numbers it produces depend
on a value inside the generator called the ‘‘seed’’. Setting this value is called ‘‘seeding
the random-number generator’’. Whenever it has the same seed value, the same
sequence of random values will be harvested. This is called ‘‘pseudo-randomness’’.
An interpreter normally goes to some effort to start up with a seed value which is
unpredictable: say, the current time of day in milliseconds. Because you just might
want to make it predictable, though, you can change the seed value within the story
file by calling random(N) for a negative number N of your own choosing. (This returns
zero.) Seeding is sometimes useful to test a game which contains random events or
delays. For example if you have release 29 of Infocom’s game ‘Enchanter’, you may
be surprised to know that you can type ‘‘#random 14’’ into it, after which its random
events will be repeatable and predictable. Internally, ‘Enchanter’ does this by calling
random(-14).

§1.15 Deprecated ways to jump around

There are four statements left which control the flow of execution, but one
should try to avoid using any of them if, for instance, a while loop would do
the job more tidily. Please stop reading this section now.

4 Oh very well. ‘Deprecated’ is too strong a word, anyway, as there are circumstances
where jumping is justified and even elegant: to break out of several loops at once, for
instance, or to construct a finite state machine. It’s the gratuitous use of jumping which
is unfortunate, as this rapidly decreases the legibility of the source code.



§ 

4 The jump statement transfers execution to some named place in the same routine.
(Some programming languages call this goto.) To use jump a notation is needed to
mark particular places in the source code. Such markers are called ‘‘labels’’. For
example, here is a never-ending loop made by hand:

[Main i;
i=1;
.Marker;
print "I have now printed this ", i++, " times.^";
jump Marker;

];

This routine has one label, Marker. A statement consisting only of a full stop and then
an identifier means ‘‘put a label here and call it this’’. Like local variables, labels belong
to the routines defining them and cannot be used by other routines.

4 The quit statement ends interpretation of the story file immediately, as if a return
had taken place from the Main routine. This is a drastic measure, best reserved for error
conditions so awful that there is no point carrying on.

44 An Inform story file has the ability to save a snapshot of its entire state and to
restore back to that previous state. This snapshot includes values of variables, the point
where code is currently being executed, and so on. Just as we cannot know if the
universe is only six thousand years old, as creationists claim, having been endowed by
God with a carefully faked fossil record, so an Inform story file cannot know if it has
been executing all along or if it was only recently restarted. The statements required
are save and restore:

save 〈label〉
restore 〈label〉

This is a rare example of an Inform feature which may depend on the host machine’s
state of health: for example, if all disc storage is full, then save will fail. It should always
be assumed that these statements may well fail. A jump to the label provided occurs if
the operation has been a success. This is irrelevant in the case of a restore since, if
all has gone well, execution is now resuming from the successful branch of the save
statement: because that is where execution was when the state was saved.

44 If you don’t mind using assembly language (see §42), you can imitate exceptions,
in the sense of programming languages like Java. The opcodes you would need are
@throw and @catch.

•REFERENCES
If you need to calculate with integers of any size then the restriction of Inform numbers
to the range −32,768 to 32,767 is a nuisance. The function library "longint.h", by
Chris Hall and Francis Irving, provides routines to calculate with signed and unsigned



§ 

4-byte integers, increasing the range to about±2,147,000,000. •L. Ross Raszewski’s
function library "ictype.h" is an Inform version of the ANSI C routines "ctype.h",
which means that it contains routines to test whether a given character is lower or
upper case, or is a punctuation symbol, and so forth. (See also the same author’s
"istring.h".)



§2 The state of play

§2.1 Directives construct things

Every example program so far has consisted only of a sequence of
routines, each within beginning and end markers [and]. Such
routines have no way of communicating with each other, and
therefore of sharing information with each other, except by calling

each other back and forth. This arrangement is not really suited to a large
program whose task may be to simulate something complicated, such as the
world of an adventure game: instead, some central registry of information is
needed, to which all routines can have access. In the author’s game ‘Curses’,
centrally-held information ranges from the current score, held in a single
variable called score, to Madame Sosostris’s tarot pack, which uses an array
of variables representing the cards on the pack, to a slide-projector held as an
‘‘object’’: a bundle of variables and routines encoding the relevant rules of the
game, such as that the whitewashed wall is only lit up when the slide projector
is switched on.

Every Inform source program is a list of constructions, made using
commands called ‘‘directives’’. These are quite different from the statements
inside routines, because directives create something at compilation time,
whereas statements are only instructions for the interpreter to follow later,
when the story file is being played.

In all there are 38 Inform directives, but most of them are seldom used, or
else are just conveniences to help you organise your source code: for instance
Include means ‘‘now include another whole file of source code here’’, and
there are directives for ‘‘if I’ve set some constant at the start of the code, then
don’t compile this next bit’’ and so on. The 10 directives that matter are the
ones creating data structures, and here they are:

[Array Attribute Class Constant
Extend Global Object Property Verb

The directive written [, meaning ‘‘construct a routine containing the following
statements, up to the next]’’, was the subject of §1. The four directives to do
with objects, Attribute, Class, Object and Property, will be the subject of



§    

§3. The two directives to do with laying out grammar, Verb and Extend, are
intimately tied up with the needs of adventure games using the Inform library,
and are useless for any other purpose, so these are left until §30. That leaves
just Array, Constant and Global.

§2.2 Constants

The simplest construction you can make is of a Constant. The following
program, an unsatisfying game of chance, shows a typical usage:

Constant MAXIMUM_SCORE = 100;
[Main;

print "You have scored ", random(MAXIMUM_SCORE),
" points out of ", MAXIMUM_SCORE, ".^";

];

The maximum score value is used twice in the routine Main. The resulting
story file is exactly the same as it would have been if the constant definition
were not present, and MAXIMUM_SCORE were replaced by 100 in both places
where it occurs. But the advantage of using Constant is that it makes it
possible to change this value from 100 to, say, 50 with only a single change to
the source code, and it makes the source code more legible.

People often write the names of constants in full capitals, but this is not
compulsory. Another convention is that the = sign, which is optional, is often
left out if the value is a piece of text rather than a number. If no value is
specified for a constant, as in the line

Constant BETA_TEST_VERSION;

then the constant is created with value 0.
A constant can be used from anywhere in the source code after the line on

which it is declared. Its value cannot be altered.

§2.3 Global variables

The variables in §1 were all ‘‘local variables’’, each owned privately by its own
routine, inaccessible to the rest of the program and destroyed as soon as the
routine stops. A ‘‘global variable’’ is permanent and its value can be used or
altered from every routine.



§    

The directive for declaring a global variable is Global. For example:

Global score = 36;

This creates a variable called score, which at the start of the program has the
value 36. (If no initial value is given, it starts with the value 0.)

A global variable can be altered or used from anywhere in the source code
after the line on which it is declared.

§2.4 Arrays

An ‘‘array’’ is an indexed collection of variables, holding a set of numbers
organised into a sequence. To see why this useful, suppose that a pack of cards
is to be simulated. You could define 52 different variables with Global, with
names like Ace_of_Hearts, to hold the position of each card in the pack: but
then it would be very tiresome to write a routine to shuffle them around.

Instead, you can declare an array:

Array pack_of_cards --> 52;

which creates a stock of 52 variables, called the ‘‘entries’’ of the array, and
referred to in the source code as

pack_of_cards-->0 pack_of_cards-->1 ... pack_of_cards-->51

and the point of this is that you can read or alter the variable for card number
i by calling it pack_of_cards-->i. Here is an example program, in full, for
shuffling the pack:

Constant SHUFFLES = 100;
Array pack_of_cards --> 52;
[ExchangeTwo x y z;
! Randomly choose two different numbers between 0 and 51:
while (x==y) {

x = random(52) - 1; y = random(52) - 1;
}
z = pack_of_cards-->x; pack_of_cards-->x = pack_of_cards-->y;
pack_of_cards-->y = z;

];
[Card n;

switch(n%13) {



§    

0: print "Ace";
1 to 9: print n%13 + 1;
10: print "Jack"; 11: print "Queen"; 12: print "King";

}
print " of ";
switch(n/13) {

0: print "Hearts"; 1: print "Clubs";
2: print "Diamonds"; 3: print "Spades";

}
];
[Main i;

! Create the pack in "factory order":
for (i=0:i<52:i++) pack_of_cards-->i = i;
! Exchange random pairs of cards for a while:
for (i=1:i<=SHUFFLES:i++) ExchangeTwo();
print "The pack has been shuffled into the following order:^";
for (i=0:i<52:i++)

print (Card) pack_of_cards-->i, "^";
];

The cards are represented by numbers in the range 0 (the Ace of Hearts) to 51
(the King of Spades). The pack itself has 52 positions, from position 0 (top)
to position 51 (bottom). The entry pack_of_cards-->i holds the number of
the card in position i. A new pack as produced by the factory would come
with Ace of Hearts on top (card 0 in position 0), running down to the King of
Spades on the bottom (card 51 in position 51).

4 A hundred exchanges is only just enough. Redefining SHUFFLES as 10,000 takes a
lot longer, while redefining it as 10 makes for a highly suspect result. Here is a more
efficient method of shuffling (contributed by Dylan Thurston), perfectly random in just
51 exchanges.

pack_of_cards-->0 = 0;
for (i=1:i<52:i++) {

j = random(i+1) - 1;
pack_of_cards-->i = pack_of_cards-->j; pack_of_cards-->j = i;

}

· · · · ·
In the above example, the array entries are all created containing 0. Instead,
you can give a list of constant values. For example,

Array small_primes --> 2 3 5 7 11 13;



§    

is an array with six entries, small_primes-->0 to small_primes-->5, initially
holding 2, 3, 5, 7, 11 and 13.

The third way to create an array gives some text as an initial value, occa-
sionally useful because one popular use for arrays is as ‘‘strings of characters’’
or ‘‘text buffers’’. For instance:

Array players_name --> "Frank Booth";

is equivalent to the directive:

Array players_name --> ’F’ ’r’ ’a’ ’n’ ’k’ ’ ’ ’B’ ’o’ ’o’ ’t’ ’h’;

Literal text like "Frank Booth" is a constant, not an array, and you can no
more alter its lettering than you could alter the digits of the number 124. The
array players_name is quite different: its entries can be altered. But this means
it cannot be treated as if it were a string constant, and in particular can’t be
printed out with print (string). See below for the right way to do this.

•WARNING
In the pack of cards example, the entries are indexed 0 to 51. It’s therefore
impossible for an interpreter to obey the following statement:

pack_of_cards-->52 = 0;

because there is no entry 52. Instead, the following message will be printed
when it plays:

[** Programming error: tried to write to -->52 in the array
‘‘pack_of_cards’’, which has entries 0 up to 51 **]

Such a mistake is sometimes called breaking the bounds of the array.

· · · · ·

The kind of array constructed above is sometimes called a ‘‘word array’’. This
is the most useful kind and many game designers never use the other three
varieties at all.

4 The first alternative is a ‘‘byte array’’, which is identical except that its entries can
only hold numbers in the range 0 to 255, and that it uses the notation -> instead of
-->. This is only really useful to economise on memory usage in special circumstances,
usually when the entries are known to be characters, because ZSCII character codes
are all between 0 and 255. The ‘‘Frank Booth’’ array above could safely have been a
byte array.



§    

4 In addition to this, Inform provides arrays which have a little extra structure: they
are created with the 0th entry holding the number of entries. A word array with this
property is called a table; a byte array with this property is a string. For example, the
table

Array continents table 5;

has six entries: continents-->0, which holds the number 5, and further entries
continents-->1 to continents-->5. If the program changed continents-->0 this
would not magically change the number of array entries, or indeed the number of
continents.

44 One main reason you might want some arrangement like this is to write a general
routine which can be applied to any array. Here is an example using string arrays:

Array password string "danger";
Array phone_number string "0171-930-9000";
...
print "Please give the password ", (PrintStringArray) password,

" whenever telephoning Universal Exports at ",
(PrintStringArray) phone_number, ".";

...
[PrintStringArray the_array i;

for (i=1: i<=the_array->0: i++) print (char) the_array->i;
];

Such routines should be written with care, as the normal checking of array bounds isn’t
performed when arrays are accessed in this indirect sort of fashion, so any mistake you
make may cause trouble elsewhere and be difficult to diagnose.

44With all data structures (i.e., with objects, strings, routines and arrays) Inform
calls by reference, not by value. So, for instance:

[DamageStringArray the_array i;
for (i=1: i<=the_array->0: i++) {

if (the_array->i == ’a’ or ’e’ or ’i’ or ’o’ or ’u’)
the_array->i = random(’a’, ’e’, ’i’, ’o’, ’u’);

print (char) the_array->i;
}

];

means that the call DamageStringArray(password_string) will not just print (say)
‘‘dungor’’ but also alter the one and only copy of password_string in the story file.



§    

§2.5 Reading into arrays from the keyboard

Surprisingly, perhaps, given that Inform is a language for text adventure games,
support for reading from the keyboard is fairly limited. A significant difference
of approach between Inform and many other systems for interactive fiction
is that mechanisms for parsing textual commands don’t come built into the
language itself. Instead, game designers use a standard Inform parser program
which occupies four and a half thousand lines of Inform code.

Reading single key-presses, perhaps with time-limits, or for that matter
reading the mouse position and state (in a Version 6 game) requires the use of
Inform assembly language: see §42.

A statement called read does however exist for reading in a single line of
text and storing it into a byte array:

read text_array 0;

You must already have set text_array->0 to the maximum number of
characters you will allow to be read. (If this is N , then the array must be
defined with at least N + 3 entries, the last of which guards against overruns.)
The number of characters actually read, not counting the carriage return, will
be placed into text_array->1 and the characters themselves into entries from
text_array->2 onwards. For example, if the player typed ‘‘GET IN’’:

->0 1 2 3 4 5 6 7

max characters text typed by player, reduced to lower case

60 6 ’g’ ’e’ ’t’ ’ ’ ’i’ ’n’

The following echo chamber demonstrates how to read from this array:

Array text_array -> 63;
[Main c x;

for (::) {
print "^> ";
text_array->0 = 60;
read text_array 0;
for (x=0:x<text_array->1:x++) {

c = text_array->(2+x);
print (char) c; if (c == ’o’) print "h";

}
}

];

· · · · ·



§    

4 read can go further than simply reading in the text: it can work out where
the words start and end, and if they are words registered in the story file’s built-in
vocabulary, known as the ‘‘dictionary’’. To produce all this information, read needs to
be supplied with a second array:

read text_array parse_array;

read not only stores the text (just as above) but breaks down the line into a sequence of
words, in which commas and full stops count as separate words in their own right. (An
example is given in Chapter IV, §30.) In advance of this parse_array->0 must have
been set to W , the maximum number of words you want to parse. Any further text will
be ignored. parse_array should have at least 4W +2 entries, because parse_array->1
is set to the actual number of words parsed, and then a four-entry block is written into
the array for each word parsed. Numbering the words as 1, 2, 3, . . ., the number of
letters in word n is written into parse_array->(n*4), and the position of the start of
the word in text_array. The dictionary value of the word, or zero if it isn’t recognised,
is stored as parse_array-->(n*2-1). The corresponding parsing array to the previous
text array, for the command ‘‘GET IN’’, looks like so:

->0 1 2 3 4 5 6 7 8 9

max words first word second word

10 2 ’get’ 2 3 ’in’ 5 2

In this example both words were recognised. The word ‘‘get’’ began at position ->2
in the text array, and was 3 characters long; the word ‘‘in’’ began at ->5 and was 2
characters long. The following program reads in text and prints back an analysis:

Array text_array -> 63;
Array parse_array -> 42;
[Main w x length position dict;

w = ’mary’; w = ’had’; w = ’a//’; w = ’little’; w = ’lamb’;
for (::) {

print "^> ";
text_array->0 = 60; parse_array->0 = 10;
read text_array parse_array;
for (w=1:w<=parse_array->1:w++) {

print "Word ", w, ": ";
length = parse_array->(4*w);
position = parse_array->(4*w + 1);
dict = parse_array-->(w*2-1);
for (x=0:x<length:x++)

print (char) text_array->(position+x);



§    

print " (length ", length, ")";
if (dict) print " equals ’", (address) dict, "’^";

else print " is not in the dictionary^";
}

}
];

Note that the pointless-looking first line of Main adds five words to the dictionary. The
result is:

>MARY, hello
Word 1: mary (length 4) equals ’mary’
Word 2: , (length 1) is not in the dictionary
Word 3: hello (length 5) is not in the dictionary

4 What goes into the dictionary? The answer is: any of the words given in the name
of an object (see §3), any of the verbs and prepositions given in grammar by Verb and
Extend directives (see §26), and anything given as a dictionary-word constant. The last
is convenient because it means that code like

if (parse_array -->(n*2-1)) == ’purple’;

does what it looks as if it should. When compiling this line, Inform automatically
adds the word ‘‘purple’’ to the story file’s dictionary, so that any read statement will
recognise it.

•REFERENCES
Evin Robertson’s function library "array.h" provides some simple array-handling
utilities. •L. Ross Raszewski’s function library "istring.h" offers Inform versions
of the ANSI C string-handling routines, including strcmp(), strcpy() and strcat().
The further extension "znsi.h" allows the printing out of string arrays with special
escape sequences like [B interpreted as ‘‘bold face.’’ (See also the same author’s
"ictype.h".) •Adam Cadre’s function library "flags.h" manages an array of
boolean values (that is, values which can only be true or false) so as to use only
one-sixteenth as much memory as a conventional array, though at some cost to speed
of access.



§3 Objects and classes

Objects make up the substance of the world.

—Ludwig Wittgenstein (1889–1951), Tractatus

§3.1 Objects, classes, metaclasses and nothing

In Inform, objects are little bundles of routines and variables tied
up together. Dividing up the source code into objects is a good way
to organise any large, complicated program, and makes particular
sense for an adventure game, based as it usually is on simulated

items and places. One item in the simulated world corresponds to one
‘‘object’’ in the source code. Each of these pieces of the story file should
take responsibility for its own behaviour, so for instance a brass lamp in an
adventure game might be coded with an Inform object called brass_lamp,
containing all of the game rules which affect the lamp. Then again, objects do
have to interact.

In West Pit
You are at the bottom of the western pit in the twopit room. There is a large
hole in the wall about 25 feet above you.
There is a tiny little plant in the pit, murmuring ‘‘Water, water, . . .’’

In this moment from ‘Advent’, the player is more or less openly invited to
water the plant. There might be many ways to bring water to it, or indeed to
bring liquids other than water, and the rules for what happens will obviously
affect the bottle carrying the water, the water itself and the plant. Where
should the rules appear in the source code? Ideally, the plant object should
know about growing and the bottle about being filled up and emptied. Many
people feel that the most elegant approach is for the bottle, or any other flask,
not to interfere with the plant directly but instead to send a ‘‘message’’ to the
plant to say ‘‘you have been watered’’. It’s then easy to add other solutions
to the same puzzle: a successful rain dance, for instance, could also result in a
‘‘you have been watered’’ message being sent to plant. The whole behaviour
of the plant could be altered without needing even to look at the rain-dance



§   

or the bottle source code. Objects like this can frequently be cut out of the
source code for one game and placed into another, still working.

This traffic of messages between objects goes on continuously in Inform-
compiled adventure games. When the player tries to pick up a wicker cage,
the Inform library sends a message to the cage object asking if it minds being
picked up. When the player tries to go north from the Hall of Mists, the library
sends a message to an object called Hall_of_Mists asking where that would
lead, and so on.

· · · · ·

Typical large story files have so many objects (‘Curses’, for instance, has 550)
that it is convenient to group similar objects together into ‘‘classes’’. For
instance, ‘Advent’ began life as a simulation of part of the Mammoth and Flint
Ridge cave system of Kentucky, caves which contain many, many dead ends.
The Inform source code could become very repetitive without a class like so:

Class DeadEndRoom
with short_name "Dead End",

description "You have reached a dead end.",
cant_go "You’ll have to go back the way you came.";

Leaving the exact syntax for later, this code lays out some common features of
dead ends. All kinds of elegant things can be done with classes if you like, or
not if you don’t.

Objects can belong to several different classes at once, and it is sometimes
convenient to be able to check whether or not a given object belongs to a
given class. For instance, in adventures compiled with the Inform library, a
variable called location always holds the player’s current position, so it might
be useful to do this:

if (location ofclass DeadEndRoom) "Perhaps you should go back.";

· · · · ·

Items and places in an Inform game always belong to at least one class,
whatever you define, because they always belong to the ‘‘metaclass’’ Object.
(‘‘Meta’’ from the Greek for ‘‘beyond’’.) As we shall see, all of the objects
explicitly written out in Inform source code always belong to Object. Though
you seldom need to know this, there are three other metaclasses. Classes turn
out to be a kind of object in themselves, and belong to Class. (So that Class
belongs to itself. If you enjoy object-oriented programming, this will give you



§   

a warm glow inside). And although you almost never need to know or care,
routines as in §1 are internally considered as a kind of object, of class Routine;
while strings in double-quotes are likewise of class String. That’s all, though.
If in doubt, you can always find out what kind of object obj is, using the
built-in function metaclass(obj). Here are some example values:

metaclass("Violin Concerto no. 1") == String
metaclass(Main) == Routine
metaclass(DeadEndRoom) == Class
metaclass(silver_bars) == Object

Classes are useful and important, but for most game-designing purposes it’s
now safe to forget all about metaclasses.

It turns out to be useful to have a constant called nothing and meaning
‘‘no object at all’’. It really does mean that: nothing is not an object. If you try
to treat it as one, many programming errors will be printed up when the story
file is played.

4 If X is not an object at all, then metaclass(X) is nothing, and in particular
metaclass(nothing) is nothing.

§3.2 The object tree

Objects declared in the source code are joined together in an ‘‘object tree’’
which grows through every Inform story file. Adventure games use this to
represent which items are contained inside which other items.

It’s conventional to think of this as a sort of family tree without marriages.
Each object has a parent, a child and a sibling. Such a relation is always either
another object in the tree, or else nothing, so for instance the parent of an
orphan would be nothing. Here is a sample object tree:

Meadow
↓ child

Mailbox
sibling−→ Player

↓ child ↓ child

Note Sceptre
sibling−→ Bottle

sibling−→ Torch
sibling−→ Stone

↓ child

Battery

The Mailbox and Player are both children of the Meadow, which is their
parent, but only the Mailbox is the child of the Meadow. The Stone is the
sibling of the Torch, which is the sibling of the Bottle, and so on.



§   

Inform provides special functions for reading off positions in the tree:
parent, sibling do the obvious things, and child gives the first child:
in addition there’s a function called children which counts up how many
children an object has (note that grandchildren don’t count as children). Here
are some sample values:

parent (Mailbox) == Meadow
children (Player) == 4
child (Player) == Sceptre
child (Sceptre) == nothing
sibling (Torch) == Stone

•WARNING
It is incorrect to apply these functions to the value nothing, since it is not an
object. If you write a statement like print children(x); when the value of x
happens to be nothing, the interpreter will print up the message:

[** Programming error: tried to find the ‘‘children’’ of nothing **]

You get a similar error message if you try to apply these tree functions to a
routine, string or class.

§3.3 Declaring objects 1: setting up the tree

Objects are made with the directive Object. Here is a portion of source code,
with the bulk of the definitions abbreviated to ‘‘...’’:

Object Bucket ...
Object -> Starfish ...
Object -> Oyster ...
Object -> -> Pearl ...
Object -> Sand ...

The resulting tree looks a little like the source code turned on its side:

Bucket
↓ child

Starfish
sibling−→ Oyster

sibling−→ Sand
↓ child

Pearl



§   

The idea is that if no arrows -> are given in the Object definition, then the
object has no parent. If one -> is given, then the object is made a child of the
last object defined with no arrows; if two are given, it’s made a child of the last
object defined with only one arrow; and so on.

An object definition consists of a ‘‘head’’ followed by a ‘‘body’’, itself
divided into ‘‘segments’’, though there the similarity with caterpillars ends.
The head takes the form:

Object 〈arrows〉 〈identifier〉 "textual name" 〈parent〉

(1) The 〈arrows〉 are as described above. Note that if one or more arrows
are given, that automatically specifies what object this is the child of, so a
〈parent〉 cannot be given as well.

(2) The 〈identifier〉 is what the object can be called inside the program, in the
same way that a variable or a routine has a name.

(3) The "textual name" can be given if the object’s name ever needs to be
printed by the program when it is running.

(4) The 〈parent〉 is an object which this new object is to be a child of. This is
an alternative to supplying arrows.

All four parts are optional, so that even this bare directive is legal:

Object;

though it makes a nameless and featureless object which is unlikely to be
useful.

§3.4 Tree statements: move, remove, objectloop

The positions of objects in the tree are by no means fixed: objects are created
in a particular formation but then shuffled around extensively during the story
file’s execution. (In an adventure game, where the objects represent items and
rooms, objects are moved across the tree whenever the player picks something
up or moves around.) The statement

move 〈object〉 to 〈object〉

moves the first-named object to become a child of the second-named one. All
of the first object’s own children ‘‘move along with it’’, i.e., remain its own
children.



§   

For instance, starting from the tree as shown in the diagram of §3.2 above,

move Bottle to Mailbox;

results in the tree

Meadow
↓ child

Mailbox
sibling−→ Player

↓ child ↓ child

Bottle
sibling−→ Note Sceptre

sibling−→ Torch
sibling−→ Stone

↓ child

Battery

When an object becomes the child of another in this way, it always becomes
the ‘‘eldest’’ child: that is, it is the new child() of its parent, pushing the
previous children over into being its siblings. In the tree above, Bottle has
displaced Note just so.

You can only move one object in the tree to another: you can’t

move Torch to nothing;

because nothing is not an object. Instead, you can detach the Torch branch
from the tree with

remove Torch;

and this would result in:

Meadow Torch
↓ child ↓ child

Mailbox
sibling−→ Player Battery

↓ child ↓ child

Bottle
sibling−→ Note Sceptre

sibling−→ Stone

The ‘‘object tree’’ is often fragmented like this into many little trees, and is not
so much a tree as a forest.

•WARNING
It would make no sense to have a circle of objects each containing the next, so
if you try to move Meadow to Note; then you’ll only move the interpreter to
print up:

[** Programming error: tried to move the Meadow to the note, which would
make a loop: Meadow in note in mailbox in Meadow **]



§   

· · · · ·

Since objects move around a good deal, it’s useful to be able to test where an
object currently is, and the condition in is provided for this. For example,

Bottle in Mailbox

is true if and only if the Bottle is one of the direct children of the Mailbox.
(Bottle in Mailbox is true, but Bottle in Meadow is false.) Note that

X in Y

is only an abbreviation for parent(X)==Y but it occurs so often that it’s worth
having. Similarly, X notin Y means parent(X)~=Y. X has to be a bona-fide
member of the object tree, but Y is allowed to be nothing, and testing X in
nothing reveals whether or not X has been removed from the rest of the tree.

· · · · ·

The remaining loop statement left over from §1 is objectloop.

objectloop(〈variable-name〉) 〈statement〉

runs through the 〈statement〉 once for each object in the game, putting each
object in turn into the variable. For example,

objectloop(x) print (name) x, "^";

prints out a list of the textual names of every object in the game. More
powerfully, any condition can be written in the brackets, as long as it begins
with a variable name.

objectloop (x in Mailbox) print (name) x, "^";

prints the names only of those objects which are direct children of the Mailbox
object.

The simple case where the condition reads ‘‘〈variable〉 in 〈object〉’’ is
handled in a faster and more predictable way than other kinds of objectloop:
the loop variable is guaranteed to run through the children of the object in
sibling order, eldest down to youngest. (This is faster because it doesn’t waste
time considering every object in the game, only the children.) If the condition
is not in this form then no guarantee is made as to the order in which the
objects are considered.



§   

•WARNING
When looping over objects with in, it’s not safe to move these same objects
around: this is like trying to cut a branch off an elm tree while sitting on it.
Code like this:

objectloop(x in Meadow) move x to Sandy_Beach;

looks plausible but is not a safe way to move everything in the Meadow, and
will instead cause the interpreter to print up

[** Programming error: objectloop broken because the object mailbox was
moved while the loop passed through it **]

Here is a safer way to move the meadow’s contents to the beach:

while (child(Meadow)) move child(Meadow) to Sandy_Beach;

This works because when the Meadow has no more children, its child is then
nothing, which is the same as false.

4 But it moves the eldest child first, with the possibly undesirable result that the
children arrive in reverse order (Mailbox and then Player, say, become Player and then
Mailbox). Here is an alternative, moving the youngest instead of the eldest child each
time, which keeps them in the same order:

while (child(Meadow)) {
x = child(Meadow); while (sibling(x)) x = sibling(x);
move x to Sandy_Beach;

}

Keeping children in order can be worth some thought when game designing. For
instance, suppose a tractor is to be moved to a farmyard in which there is already a
barn. The experienced game designer might do this like so:

move tractor to Farmyard;
move barn to Farmyard;

Although the barn was in the farmyard already, the second statement wasn’t redundant:
because a moved object becomes the eldest child, the statement does this:

Farmyard Farmyard
↓ child =⇒ ↓ child

tractor
sibling−→ barn barn

sibling−→ tractor

And this is desirable because the ordering of paragraphs in room descriptions tends
to follow the ordering of items in the object tree, and the designer wants the barn
mentioned before the tractor.



§   

4 An objectloop range can be any condition so long as a named local or global
variable appears immediately after the open bracket. This means that

objectloop (child(x) == nothing) ...

isn’t allowed, because the first thing after the bracket is child, but a dodge to get
around this is:

objectloop (x && child(x) == nothing) ...

The loop variable of an objectloop can never equal false, because that’s the same as
nothing, which isn’t an object.

44 The objectloop statement runs through all objects of metaclass Object or Class,
but skips any Routine or String.

§3.5 Declaring objects 2: with and provides

So far Objects are just tokens with names attached which can be shuffled
around in a tree. They become interesting when data and routines are attached
to them, and this is what the body of an object definition is for. The body
contains four different kinds of segments, introduced by the keywords:

with has class private

These are all optional and can be given in any order.

4 They can even be given more than once: that is, there can be two or more of a
given kind, which Inform will combine together as if they had been defined in one go.
(This is only likely to be useful for automated Inform-writing programs.)

· · · · ·

The most important segment is with, which specifies variables and, as we shall
see, routines and even arrays, to be attached to the object. For example,

Object magpie "black-striped bird"
with wingspan, worms_eaten;

attaches two variables to the bird, one called wingspan, the other called
worms_eaten. Commas are used to separate them and the object definition



§   

as a whole ends with a semicolon, as always. Variables of this kind are called
properties, and are referred to in the source code thus:

magpie.wingspan
magpie.worms_eaten

Properties are just like global variables: any value you can store in a variable
can be stored in a property. But note that

crested_grebe.wingspan
magpie.wingspan

are different and may well have different values, which is why the object whose
wingspan it is (the magpie or the grebe) has to be named.

The property wingspan is said to be provided by both the magpie and
crested_grebe objects, whereas an object whose with segment didn’t name
wingspan would not provide it. The dot . operator can only be used to set the
value of a property which is provided by the object on the left of the dot: if not
a programming error will be printed up when the story file is played.

The presence of a property can be tested using the provides condition.
For example,

objectloop (x provides wingspan) ...

executes the code ... for each object x in the program which is defined with a
wingspan property.

4 Although the provision of a property can be tested, it can’t be changed while the
program is running. The value of magpie.wingspan may change, but not the fact that
the magpie provides a wingspan.

44 Some special properties, known as ‘‘common properties’’, can have their values
read (but not changed) even for an object which doesn’t provide them. All of the
properties built into the Inform library are common properties. See §3.14.

· · · · ·
When the magpie is created as above, the initial values of

magpie.wingspan
magpie.worms_eaten

are both 0. To create the magpie with a given wingspan, we have to specify an
initial value, which we do by giving it after the name, e.g.:

Object magpie "black-striped bird"
with wingspan 5, worms_eaten;

The story file now begins with magpie.wingspan equal to 5, though mag-
pie.worms_eaten still equal to 0.



§   

· · · · ·

A property can contain a routine instead of a value. In the definition

Object magpie "black-striped bird"
with name ’magpie’ ’bird’ ’black-striped’ ’black’ ’striped’,

wingspan 5,
flying_strength [;

return magpie.wingspan + magpie.worms_eaten;
],
worms_eaten;

The value of magpie.flying_strength is given as a routine, in square brackets
as usual. Note that the Object continues where it left off after the routine-
end marker,]. Routines which are written in as property values are called
‘‘embedded’’ and are the way objects receive messages, as we shall see.

4 If, during play, you want to change the way a magpie’s flying strength is calculated,
you can simply change the value of its property:

magpie.flying_strength = ExhaustedBirdFS;

where ExhaustedBirdFS is the name of a routine to perform the new calculation.

4 Embedded routines are just like ordinary ones, with two exceptions:

(1) An embedded routine has no name of its own, since it is referred to as a property
such as magpie.flying_strength instead.

(2) If execution reaches the] end-marker of an embedded routine, then it returns
false, not true (as a non-embedded routine would).

44 Properties can be arrays instead of variables. If two or more consecutive values
are given for the same property, it becomes an array. Thus,

Object magpie "black-striped bird"
with name ’magpie’ ’bird’ ’black-striped’ ’black’ ’striped’,

wingspan 5, worms_eaten;

You can’t write magpie.name because there is no single value: rather, there is an -->
array (see §2.4). This array must be accessed using two special operators, .& and .#,
for the array and its length, as follows.

magpie.&name

means ‘‘the array held in magpie’s name property’’, so that the actual name values are
in the entries

magpie.&name-->0, magpie.&name-->1, ..., magpie.&name-->4



§   

The size of this array can be discovered with

magpie.#name

which evaluates to the twice the number of entries, in this case, to 10. Twice the
number of entries because that is the number of bytes in the array: people fairly often
use property arrays as byte arrays to save on memory.

4 name is a special property created by Inform, intended to hold dictionary words
which can refer to an object.

§3.6 Declaring objects 3: private properties

4 A system is provided for ‘‘encapsulating’’ certain properties so that only the object
itself has access to them. These are defined by giving them in a segment of the object
declaration called private. For instance,

Object sentry "sentry"
private pass_number 16339,
with challenge [attempt;

if (attempt == sentry.pass_number)
"Approach, friend!";

"Stand off, stranger.";
];

provides for two properties: challenge, which is public, and pass_number, which can
be used only by the sentry’s own embedded routines.

44 This makes the provides condition slightly more interesting than it appeared in
the previous section. The answer to the question of whether or not

sentry provides pass_number

depends on who’s asking: this condition is true if it is tested in one of the sentry’s own
routines, and elsewhere false. A private property is so well hidden that nobody else
can even know whether or not it exists.

§3.7 Declaring objects 4: has and give

In addition to properties, objects have flags attached, called ‘‘attributes’’.
(Recall that flags are a limited form of variable which can only have two values,



§   

sometimes called set and clear.) Unlike property names, attribute names have
to be declared before use with a directive like:

Attribute hungry;

Once this declaration is made, every object in the tree has a hungry flag
attached, which is either true or false at any given time. The state can be
tested with the has condition:

magpie has hungry

is true if and only if the magpie’s hungry flag is currently set. You can also test
if magpie hasnt hungry. There’s no apostrophe in hasnt.

The magpie can now be born hungry, using the has segment in its
declaration:

Object magpie "black-striped bird"
with wingspan, worms_eaten
has hungry;

The has segment contains a list (without commas in between) of the attributes
which are initially set: for instance, the steel grate in the Inform example game
‘Advent’ includes the line

has static door openable lockable locked;

The state of an attribute can be changed during play using the give
statement:

give magpie hungry;

sets the magpie’s hungry attribute, and

give magpie ~hungry;

clears it again. The give statement can take more than one attribute at a time,
too:

give double_doors_of_the_horizon ~locked openable open;

means ‘‘clear locked and set openable and open’’.†

† The refrain from the prelude to Act I of Philip Glass’s opera Akhnaten is ‘‘Open
are the double doors of the horizon/ Unlocked are its bolts’’.



§   

44 An attribute can also have a tilde ~ placed in front in the has part of an object
declaration, indicating ‘‘this is definitely not held’’. This is usually what would have
happened anyway, except that class inheritance (see below) might have passed on an
attribute: if so, this is how to get rid of it again. Suppose there is a whole class of steel
grates like the one in ‘Advent’ mentioned above, providing for a dozen grates scattered
through a game, but you also want a loose grate L whose lock has been smashed. If
L belongs to the class, it will start the game with attributes making it locked like the
others, because the class sets these automatically: but if you include has ~lockable
~locked; in its declaration, these two attributes go away again.

§3.8 Declaring objects 5: class inheritance

A class is a prototype design from which other objects are manufactured. These
resulting objects are sometimes called instances or members of the class, and
are said to inherit from it.

Classes are useful when a group of objects are to have common features.
In the definition of the magpie above, a zoologically doubtful formula was laid
out for flying strength:

flying_strength [;
return magpie.wingspan + magpie.worms_eaten;

],

This formula ought to apply to birds in general, not just to magpies, and in the
following definition it does:

Attribute flightless;
Class Bird
with wingspan 7,

flying_strength [;
if (self has flightless) return 0;
return self.wingspan + self.worms_eaten;

],
worms_eaten;

Bird "ostrich" with wingspan 3, has flightless;
Bird "magpie" with wingspan 5;
Bird "crested grebe";
Bird "Great Auk" with wingspan 15;
Bird "early bird" with worms_eaten 1;

Facts about birds in general are now located in a class called Bird. Every
example of a Bird automatically provides wingspan, a flying_strength



§   

routine and a count of worms_eaten. Notice that the Great Auk is not content
with the average avian wingspan of 7, and insists on measuring 15 across. This
is an example of inheritance from a class being over-ridden by a definition
inside the object. The actual values set up are as follows:

B B.wingspan B.worms_eaten

ostrich 3 0
magpie 5 0

crested grebe 7 0
Great Auk 15 0
early bird 7 1

Note also the use of the special value self in the definition of Bird. It means
‘‘whatever bird I am’’: if the flying_strength routine is being run for the
ostrich, then self means the ostrich, and so on.

The example also demonstrates a general rule: to create something, begin
its declaration with the name of the class you want it to belong to: a plain
Object, a Class or now a Bird.

4 Sometimes you need to specify that an object belongs to many classes, not just
one. You can do this with the class segment of the definition, like so:

Object "goose that lays the golden eggs"
class Bird Treasure;

This goose belongs to three classes: Object of course, as all declared objects do, but also
Bird and Treasure. (It inherits from Object first and then Bird and then Treasure,
attribute settings and property values from later-mentioned classes overriding earlier
ones, so if these classes should give contradictory instructions then Treasure gets
the last word.) You can also make class definitions have classes, or rather, pass on
membership of other classes:

Class BirdOfPrey
class Bird
with wingspan 15,

people_eaten;
BirdOfPrey kestrel;

makes kestrel a member of both BirdOfPrey and of Bird. Dutiful apostles of object-
oriented programming may want to call BirdOfPrey a ‘‘subclass’’ of Bird. Indeed, they
may want to call Inform a ‘‘weakly-typed language with multiple-inheritance’’, or more
probably a ‘‘shambles’’.



§   

44 For certain ‘‘additive’’ common properties, clashes between what classes say and
what an instance says are resolved differently: see §5. Inform’s built-in property name is
one of these.

§3.9 Messages

Objects communicate with each other by means of messages. A message has a
sender, a receiver and some parameter values attached, and it always produces
a reply, which is just a single value. For instance,

x = plant.pour_over(cold_spring_water);

sends the message pour_over with a single parameter, cold_spring_water,
to the object plant, and puts the reply value into x.

In order to receive this message, plant has to provide a pour_over
property. If it doesn’t, then the interpreter will print something like

[** Programming error: the plant (object number 21) has no property
pour over to send message **]

when the story file is played. The pour_over property will normally be a
routine, perhaps this one:

pour_over [liquid;
remove liquid;
switch(liquid) {

oil: "The plant indignantly shakes the oil off its
leaves and asks, ~Water?~";

...
}

];

Inside such a routine, self means the object receiving the message and
sender means the object which sent it. In a typical Inform game situation,
sender will often be the object InformLibrary, which organises play and
sends out many messages to items and places in the game, consulting them
about what should happen next. Much of any Inform game designer’s time is
spent writing properties which receive messages from InformLibrary: before,
after, each_turn and n_to among many others.

You can see all the messages being sent in a game as it runs using the
debugging verb ‘‘messages’’: see §7 for details. This is the Inform version of
listening in on police-radio traffic.



§   

4 It was assumed above that the receiving property value would be a routine. But
this needn’t always be true. It can instead be: nothing, in which case the reply value
is also nothing (which is the same as zero and the same as false). Or it can be an
Object or a Class, in which case nothing happens and the object or class is sent back
as the reply value. Or it can be a string in double-quotes, in which case the string is
printed out, then a new-line is printed, and the reply value is true.

4 This can be useful. Here is approximately what happens when the Inform library
tries to move the player northeast from the current room (the location) in an adventure
game (leaving out some complications to do with doors):

if (location provides ne_to) {
x = location.ne_to();
if (x == nothing) "You can’t go that way.";
if (x ofclass Object) move player to x;

} else "You can’t go that way.";

This neatly deals with all of the following cases:

Object Octagonal_Room "Octagonal Room"
with ...

ne_to "The way north-east is barred by an invisible wall!",
w_to Courtyard,
e_to [;

if (Amulet has worn) {
print "A section of the eastern wall suddenly parts

before you, allowing you into...^";
return HiddenShrine;

}
],
s_to [;

if (random(5) ~= 1) return Gateway;
print "The floor unexpectedly gives way, dropping you

through an open hole in the plaster...^";
return random(Maze1, Maze2, Maze3, Maze4);

];

Noteworthy here is that the e_to routine, being an embedded routine, returns false
which is the same as nothing if the] end-marker is reached, so if the Amulet isn’t
being worn then there is no map connection east.

44 The receiving property can even hold an array of values, in which case the message
is sent to each entry in the array in turn. The process stops as soon as one of these
entries replies with a value other than nothing or false. If every entry is tried and
they all replied nothing, then the reply value sent back is nothing. (This is useful to
the Inform library because it allows before rules to be accumulated from the different
classes an object belongs to.)



§   

§3.10 Passing messages up to the superclass

4 It fairly often happens that an instance of a class needs to behave almost, but not
quite, as the class would suggest. For instance, suppose the following Treasure class:

Class Treasure
with deposit [;

if (self provides deposit_points)
score = score + self.deposit_points;

else score = score + 5;
move self to trophy_case;
"You feel a sense of increased esteem and worth.";

];

and we want to create an instance called Bat_Idol which flutters away, resisting
deposition, but only if the room is dark:

Treasure Bat_Idol "jewelled bat idol"
with deposit [;

if (location == thedark) {
remove self;
"There is a clinking, fluttering sound!";

}
...

];

In place of ..., what we want is all of the previous source code about depositing
treasures. We could just copy it out again, but a much neater trick is to write:

self.Treasure::deposit();

Instead of sending the message deposit, we send the message Treasure::deposit,
which means ‘‘what deposit would do if it used the value defined by Treasure’’. The
double-colon :: is called the ‘‘superclass operator’’. (The word ‘‘superclass’’, in this
context, is borrowed from the Smalltalk-80 language.)

44 object.class::property is the value of property which the given object would
normally inherit from the given class. (Or it gives an error if the class doesn’t provide
that property or if the object isn’t a member of that class).

44 It’s perfectly legal to write something like x = Treasure::deposit; and then to
send Bat_Idol.x();.



§   

§3.11 Creating and deleting objects during play

In an adventure-game setting, object creation is useful for something like a
beach full of stones: if the player wants to pick up more and more stones, the
game needs to create a new object for each stone brought into play.

Besides that, it is often elegant to grow structures organically. A maze
of caves being generated during play, for example, should have new caves
gradually added onto the map as and when needed.

The trouble with this is that since resources cannot be infinite, the cave-
objects have to come from somewhere, and at last they come no more. The
program must be able to cope with this, and it can present the programmer
with real difficulties, especially if the conditions that will prevail when the
supply runs out are hard to predict.

Inform does allow object creation during play, but it insists that the
programmer must specify in advance the maximum resources which will ever
be needed. (For example, the maximum number of beach stones which can
ever be in play.) This is a nuisance, but means that the resulting story file will
always work, or always fail, identically on every machine running it. It won’t
do one thing on the designer’s 256-megabyte Sun workstation in Venice and
then quite another on a player’s personal organiser in a commuter train in New
Jersey.

· · · · ·

If you want to create objects, you need to define a class for them and to specify
N , the maximum number ever needed at once. Objects can be deleted once
created, so if all N are in play then deleting one will allow another to be
created.

Suppose the beach is to contain up to fifty pebbles. Then:

Class Pebble(50)
with name ’smooth’ ’pebble’,

short_name "smooth pebble from the beach";

Pebble is an ordinary class in every respect, except that it has the ability to
create up to N = 50 instances of itself.

Creating and destroying objects is done by sending messages to the class
Pebble itself, so for instance sending the message Pebble.create() will bring
another pebble into existence. Classes can receive five different messages, as
follows:



§   

remaining()
How many more instances of this class can be created?

create(〈parameters〉)
Replies with a newly created object of this class, or else with nothing if no
more can be created. If given, the parameters are passed on to the object so
that it can use them to configure itself (see below).

destroy(I)
Destroys the instance I, which must previously have been created. You can’t
destroy an object which you defined by hand in the source code. (This is quite
unlike remove, which only takes an object out of the tree for a while but keeps
it in existence, ready to be moved back again later.)

recreate(I, 〈parameters〉)
Re-initialises the instance I, as if it had been destroyed and then created again.

copy(I, J)
Copies the property and attribute values from I to be equal to those of J,
where both have to be instances of the class. (If a property holds an array, this
is copied over as well.)

4 It’s rather useful that recreate and copy can be sent for any instances, not just
instances which have previously been created. For example,

Plant.copy(Gilded_Branch, Poison_Ivy)

copies over all the features of a Plant from Poison_Ivy to Gilded_Branch, but leaves
any other properties and attributes of the gilded branch alone. Likewise,

Treasure.recreate(Gilded_Branch)

only resets the properties to do with Treasure, leaving the Plant properties alone.

4 If you didn’t give a number like (50) in the class definition, then you’ll find that
N is zero. copy will work as normal, but remaining will return zero and create will
always return nothing. There is nothing to destroy and since this isn’t a class which
can create objects, recreate will not work either. (Oh, and don’t try to send these
messages to the class Class: creating and destroying classes is called ‘‘programming’’,
and it’s far too late when the game is already being played.)

44 You can even give the number as (0). You might do this either so that Class
Gadget(MAX_GADGETS) in some library file will work even if the constant MAX_GADGETS
happens to be zero. Or so that you can at least recreate existing members of the class
even if you cannot create new ones.



§   

· · · · ·

The following example shows object creation used in a tiny game, dramatising
a remark attributed to Isaac Newton (though it appears only in Brewster’s
Memoirs of Newton).

Constant Story "ISAAC NEWTON’S BEACH";
Constant Headline "^An Interactive Metaphor^";
Include "Parser";
Include "VerbLib";
Class Pebble(50)
with name ’smooth’ ’pebble’ ’stone’ ’pebbles//p’ ’stones//p’,

short_name "smooth pebble from the beach",
plural "smooth pebbles from the beach";

Object Shingle "Shingle"
with description

"You seem to be only a boy playing on a sea-shore, and
diverting yourself in finding a smoother pebble or a
prettier shell than ordinary, whilst the great ocean of
truth lies all undiscovered before you.",

has light;
Object -> "pebble"

with name ’smoother’ ’pebble’ ’stone’ ’stones’ ’shingle’,
initial "The breakers drain ceaselessly through the shingle,

spilling momentary rock-pools.",
before [new_stone;

Take:
new_stone = Pebble.create();
if (new_stone == nothing)

"You look in vain for a stone smoother than
the fifty ever-smoother stones you have
gathered so far.";

move new_stone to Shingle;
<<Take new_stone>>;

],
has static;

[Initialise;
location = Shingle; "^^^^^Welcome to...^";

];
Include "Grammar";

In this very small adventure game, if the player types ‘‘take a pebble’’, he will
get one: more surprisingly, if he types ‘‘take a smoother pebble’’ he will get
another one, and so on until his inventory listing reads ‘‘fifty smooth pebbles



§   

from the beach’’. (See §29 for how to make sure identical objects are described
well in Inform adventure games.) Notice that a newly-created object is in
nothing, that is, is outside the object tree, so it must be moved to Shingle in
order to come to the player’s hand.

· · · · ·

However smooth, one pebble is much like another. More complicated objects
sometimes need some setting-up when they are created, and of course in good
object-oriented style they ought to do this setting-up for themselves. Here is a
class which does:

Class Ghost(7)
with haunting,

create [;
self.haunting = random(Library, Ballroom, Summer_House);
move self to self.haunting;
if (self in location)

"^The air ripples as if parted like curtains.";
];

What happens is that when the program sends the message

Ghost.create();

the class Ghost creates a new ghost G, if there aren’t already seven, and then
sends a further message

G.create();

This new object G chooses its own place to haunt and moves itself into place.
Only then does the class Ghost reply to the outside program. A class can also
give a destroy routine to take care of the consequences of destruction, as in
the following example:

Class Axe(30);
Class Dwarf(7)
with create [x;

x = Axe.create(); if (x ~= nothing) move x to self;
],
destroy [x;

objectloop (x in self && x ofclass Axe) Axe.destroy(x);
];



§   

A new axe is created whenever a new dwarf is created, while stocks last, and
when a dwarf is destroyed, any axes it carries are also destroyed.

Finally, you can supply create with up to 3 parameters. Here is a case
with only one:

Class GoldIngot(10)
with weight, value,

create [carats;
self.value = 10*carats;
self.weight = 20 + carats;

];

and now GoldIngot.create(24) will create a 24-carat gold ingot.

§3.12 Sending messages to routines and strings

4 §3.9 was about sending messages to Objects, and then in §3.11 it turned out that
there are five messages which can be sent to a Class. That’s two of the four metaclasses,
and it turns out that you can send messages to a Routine and a String too.

The only message you can send to a Routine is call, and all this does is to call it.
So if Explore is the name of a routine,

Explore.call(2, 4); and Explore(2, 4);

do exactly the same as each other. This looks redundant, except that it allows a little
more flexibility: for instance

(random(Hello, Goodbye)).call(7);

has a 50% chance of calling Hello(7) and a 50% chance of calling Goodbye(7). As
you might expect, the call message replies with whatever value was returned by the
routine.

Two different messages can be sent to a String. The first is print, which is
provided because it logically ought to be, rather than because it’s useful. So, for
example,

("You can see an advancing tide of bison!").print();

prints out the string, followed by a new-line, and evaluates as true.
The second is print_to_array. This copies out the text of the string into entries

2, 3, 4, . . . of the supplied byte array, and writes the number of characters as a word



§   

into entries 0 and 1. (Make sure that the byte array is large enough to hold the text of
the string.) For instance:

Array Petals->30;
...

("A rose is a rose is a rose").print_to_array(Petals);

will leave Petals-->0 set to 26 and place the letters ’A’, ’ ’, ’r’, ’o’, . . ., ’e’ into
the entries Petals->2, Petals->3, . . ., Petals->27. For convenience, the reply value
of the message print_to_array is also 26. You can use this message to find the length
of a string, copying the text into some temporary array and only making use of this
return value.

§3.13 Common properties and Property

44 Many classes, the Bird class for example, pass on properties to their members.
Properties coming from the class Object are called ‘‘common properties’’. Every
item and place in an adventure game belongs to class Object, so a property inherited
from Object will be not just common but well-nigh universal. Properties which aren’t
common are sometimes called ‘‘individual’’.

The Inform library sets up the class Object with about fifty common properties.
Story files would be huge if all of the objects in a game actually used all of these
common properties, so a special rule applies: you can read a common property for any
Object, but you can only write to it if you’ve written it into the object’s declaration yourself.

For instance, the library contains the directive

Property cant_go "You can’t go that way.";

This tells Inform to add cant_go to the class definition for Object. The practical
upshot is that you can perform

print_ret (string) location.cant_go;

whatever the location is, and the resulting text will be ‘‘You can’t go that way.’’ if the
location doesn’t define a cant_go value of its own. On the other hand

location.cant_go = "Please stop trying these blank walls.";

will only work if location actually provides a cant_go value of its own, which you can
test with the condition location provides cant_go.



§   

44 Using the superclass operator you can read and even alter the default values of
common properties at run-time: for instance,

location.Object::cant_go = "Another blank wall. Tsk!";

will substitute for ‘‘You can’t go that way.’’

44 The Inform library uses common properties because they’re marginally faster to
access and marginally cheaper on memory. Only 62 are available, of which the compiler
uses 3 and the library a further 47. On the other hand, you can have up to 16,320
individual properties, which in practical terms is as good as saying they are unlimited.

§3.14 Philosophy

44 ‘‘Socialism is all very well in practice, but does it work in theory?’’ (Stephen Fry).
While the chapter is drizzling out into small type, this last section is aimed at those
readers who might feel happier with Inform’s ideas about classes and objects if only
there were some logic to it all. Other readers may feel that it’s about as relevant to
actual Inform programming as socialist dialectic is to shopping for groceries. Here are
the rules anyway:

(1) Story files are made up of objects, which may have variables attached of various
different kinds, which we shall here call ‘‘properties’’.

(2) Source code contains definitions of both objects and classes. Classes are abstract
descriptions of common features which might be held by groups of objects.

(3) Any given object in the program either is, or is not, a member of any given class.
(4) For every object definition in the source code, an object is made in the story file.

The definition specifies which classes this object is a member of.
(5) If an object X is declared as a member of class C, then X ‘‘inherits’’ property values

as given in the class definition of C.

Exact rules of inheritance aren’t relevant here, except perhaps to note that one of the
things inherited from class C might be the membership of some other class, D.

(6) For every class definition, an object is made in the story file to represent it, called
its ‘‘class-object’’.

For example, suppose we have a class definition like:

Class Shrub
with species;

The class Shrub will generate a class-object in the final program, also called Shrub.
This class-object exists to receive messages like create and destroy and, more



§   

philosophically, to represent the concept of ‘‘being a shrub’’ within the simulated
world.

The class-object of a class is not normally a member of that class. The concept of
being a shrub is not itself a shrub, and the condition Shrub ofclass Shrub is false.
Individual shrubs provide a property called species, but the class-object of Shrub does
not: the concept of being a shrub has no single species.

(7) Classes which are automatically defined by Inform are called ‘‘metaclasses’’. There
are four of these: Class, Object, Routine and String.

It follows by rule (6) that every Inform program contains the class-objects of these four,
also called Class, Object, Routine and String.

(8) Every object is a member of one, and only one, metaclass:
(8.1) The class-objects are members of Class, and no other class.
(8.2) Routines in the program, including those given as property values, are

members of Routine and no other class.
(8.3) Constant strings in the program, including those given as property values,

are members of String, and of no other class.
(8.4) The objects defined in the source code are members of Object, and possibly

also of other classes defined in the source code.

It follows from (8.1) that Class is the unique class whose class-object is one of its own
members: so Class ofclass Class is true.

(9) Contrary to rules (5) and (8.1), the class-objects of the four metaclasses do not
inherit from Class.

(10) Properties inherited from the class-object of the metaclass Object are read-only
and cannot be set.

· · · · ·
To see what the rules entail means knowing the definitions of the four metaclasses.
These definitions are never written out in any textual form inside Inform, as it happens,
but this is what they would look like if they were. (Metaclass is an imaginary directive,
as the programmer isn’t allowed to create new metaclasses.)

Metaclass Object
with name,

...;

A class from which the common properties defined by Property are inherited, albeit
(by rule (10), an economy measure) in read-only form.

Metaclass Class
with create [...; ...],

recreate [instance ...; ...],
destroy [instance; ...],
copy [instance1 instance2; ...],
remaining [; ...];



§   

So class-objects respond only to these five messages and provide no other properties:
except that by rule (9), the class-objects Class, Object, Routine and String provide
no properties at all. The point is that these five messages are concerned with object
creation and deletion at run time. But Inform is a compiler and not, like Smalltalk-80 or
other highly object-oriented languages, an interpreter. Rule (9) expresses our inability
to create the program while it is actually running.

Metaclass Routine
with call [parameters...; ...];

Routines therefore provide only call.

Metaclass String
with print [; print_ret (string) self;],

print_to_array [array; ...];

Strings therefore provide only print and print_to_array.

•REFERENCES
L. Ross Raszewski’s library extension "imem.h" manages genuinely dynamic memory
allocation for objects, and is most often used when memory is running terribly short.



